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Abstract—This paper examines the problem of locating outlier columns
in a large, otherwise low-rank matrix, in the setting where the data
are noisy. We propose a randomized two-step inference framework, and
establish sufficient conditions on the required sample complexities under
which these methods succeed (with high probability) in accurately locat-
ing the outliers. Numerical experimental results are provided to verify
the theoretical bounds and demonstrate the computational efficiency of
the proposed algorithm.

I. INTRODUCTION

In this paper we examine a robust outlier identification problem.
Given a data matrix M ∈ Rn1×n2 , we assume that

M = L + C + N, (1)
where L is a rank-r matrix, C is a column-sparse matrix with k
nonzero columns that are interpreted as “outliers” of the subspace
spanned by columns of L, and N is an additive noise. Our goal is
to identify the locations IC of the nonzero columns of C, without
necessarily identifying the inliers (or the subspace they span), and
n1, n2 are possibly very large relative to r and k.

Our investigation is motivated by a wide class of “big data”
applications where the outliers themselves are of interest, such as
collaborative filtering [1], network traffic [2], and computer vision
[3], [4]. A number of contemporary methods have been developed,
which exploit low-dimensional models within the context of con-
vex inference methods based on robust PCA [5]–[8]. Despite their
provable analytical successes, these methods can be computationally
demanding when applied to very large data matrices.

Based on our initial investigation for noiseless case [9], [10],
we propose a randomized two-step inference procedure having both
low sample and implementation complexities, called robust adaptive
compressive outlier sensing (RACOS), for locating column outliers
from noisy observations. In Step 1, we compress the rows and sample
a few columns of M, and perform outlier pursuit (OP) to estimate the
column space of the corresponding low-rank component. In Step 2,
we perform a column-wise projection of the row compressed data of
M onto the estimated column space obtained from Step 1 to recover
the identities of outliers. The details are provided in Algorithm 1.

Algorithm 1 RACOS for Noisy Observations (RACOS-N)
Input: M, γ ∈ (0, 1), λ, α, ε1, ε2 > 0, and q,m ∈ [n1]
Initialize: Φ ∈ Rm×n1 , Ψ ∈ Rq×m and S = I:,S , where S = {j ∈

[n2] : Sj
iid∼ Bernoulli(γ) = 1} and p = |S|

Step 1. Collect Measurements Y(1) = ΦMS

Solve OP: {L̂, Ĉ} = argminL,C ‖L‖∗ + λ‖C‖1,2
s.t. ‖Y(1) −L−C‖F ≤ ε1

Estimate L̂(1) = ÛDα(Σ̂)V̂∗, where L̂ = ÛΣ̂V̂∗ and
Dα(Σ̂) preserves entries of Σ larger than α.

Step 2. Let L̂(1) be the linear subspace spanned by col’s of L̂(1)

Set PL̂⊥
(1)

, I−PL̂(1)
and Collect Y(2) = Ψ PL̂⊥

(1)
(ΦM)

Output: ÎC = {i : 1(‖(Y(2)):,i‖2 > ε2) = 1}
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II. PERFORMANCE GUARANTEES

We first introduce two terminologies: (i) Given the compact SVD
L = UΣV∗, L is said to satisfy the column incoherence property
with parameter µV ∈ [1, nL/r] if maxj∈[n2] ‖V∗ej‖22 ≤ µV

r
nL

,
where {ej} are canonical basis vectors for Rn2 ; and (ii) A random
matrix Φ ∈ Rm×n is said to satisfy the distributional JL property
if Pr

( ∣∣ ‖Φv‖22 − ‖v‖22
∣∣ ≥ ε‖v‖22 ) ≤ 2e−mf(ε) for any fixed v ∈

Rn and ε ∈ (0, 1), where f(ε) > 0 is a constant depending only on
ε that is specific to the distribution of Φ.

Motivated from the noiseless case in [9], we state the structural
conditions for noisy observations as follows: (d1) rank(L) = r <
min{n1, n2}; (d2) L has nL = n2 − k nonzero columns; (d3) L
satisfies the column incoherence property with parameter µV; (d4)
the condition number of L satisfies κ = σ1(L)

σr(L)
<∞; and (d5) C has

|IC| = k nonzero columns, where IC = {i ∈ [n2] : ‖PL⊥C:,i‖2 >
τ1‖C:,i‖2} for some constant τ1 ∈ (0, 1).

Due to the existence of noise, we required further structural condi-
tions of N: (n1) σr(L) > 90

√
2γ

τ1
n2ηN; and (n2) mini∈IC ‖C:,i‖2 >

τ2ηN for some constant τ2, where ηN = maxj∈[n2] ‖N:,j‖2. These
conditions hold trivially for noiseless case when N = 0. Then the
main result is provide as follows.

Theorem II.1 (Accurate Recovery via RACOS-N). For model (1),
suppose that L and C satisfy (d1)-(d5) with k ≤ n2

3(1+1024 rµV)
.

Let the measurement matrices Φ and Ψ satisfy the distributional JL
property, and for a fixed δ ∈ (0, 1), suppose that the column subsam-
pling parameter γ, and the row and column sampling parameters m
and q, respectively, satisfy

γ ≥ max

{
200 log( 6

δ
)

nL
,

600(1+1024rµV) log( 6
δ

)

n2
,

10rµV log( 6r
δ

)

nL

}
,

m ≥
5(r+1)+log(2n2)+log( 2

δ
)

f(1/4)
, and q ≥

4 log(
2n2
δ

)

f(1/4)
.

Further suppose that N satisfies (n1) and (n2), where τ2 satisfies
τ1τ2 > 6(β + 1)(τ1/4 + 1) + 90

√
6γβκn2 with β >

√
3, and

λ in OP satisfies λ = 3
√

1+1024µVr

14
√
ň2

, where ň2 is the number
of columns of S. Then there exist constants α and ε2 satisfying
18γn2ηN < α < 54γn2ηN and maxj∈IL ‖ΨPL̂⊥

(1)
(ΦM:,j)‖2 <

ε2 < mini∈IC ‖ΨPL̂⊥
(1)

(ΦM:,i)‖2, then with probability at least
1− 3δ, we have simultaneously:

(C1) RACOS-N correctly identifies outliers (i.e., ÎC = IC ), and
(C2) the total number of measurements collected is no greater than((

3
2

)
γm+ q

)
n2.

Theorem II.1 guarantees that RACOS-N succeeds with an effective
sampling rate #obs

n1n2
= O

(
(r+logn2)(n2/nL)µVr log r

n1n2
+ logn2

n1

)
w.h.p. Note that we provide a result for deterministic noise N. Im-
proved result can be obtained for random N. Numerical evaluations
are provided in Figure 1, 2, and 3 to justify the tightness of the bounds
for our parameters and the improvement on computational cost over
the full-size data model. We refer [9], [11] for real data experiments
on salient image feature detection, and [12] for a full version of this
paper with detailed analysis. We further refer extensions of the model
to tensor outliers [13] and dictionary based outliers [14].
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Fig. 1. Demonstration of the probability of success Pr(ÎC = IC) versus the minimal singular value σr(L) of L for zero-mean Gaussian noise under
different choices of the variance σN (a and b) and zero-mean Laplace noise under different choices of the parameters λN (c and d). (b) and (d) provide
the results with rescaling of σr(L) by

√
γn2ηN. A trial is deemed a success if mini∈IC ‖Ψ PL̂⊥

(1)
(ΦM:,i)‖2 > maxi∈IL ‖Ψ PL̂⊥

(1)
(ΦM:,i)‖2. We

generate both the row sampling matrix Φ and the row reduction matrix Ψ with i.i.d. N (0, 1) entries. We fix n1 = 100, n2 = 1000, q = 20, k = 0.2n2,
nL = n2 − k, λ = 0.4, r = 5, m = 0.3n1 and γ = 0.2. We generate two random matrices U ∈ Rn1×r and V ∈ RnL×r with i.i.d. N (0, 1) entries, and
take L0 = [UVT 0n1×k]. Then let L =

σr(L)
σr(L0)

U0Σ0VT
0 , where U0Σ0VT

0 is SVD of L0, σr(L0) = (Σ0)rr is the minimal singular value of L0,
and σr(L) is a parameter to control the singular values of L. In panel (a), we observe that as σN increases, the threshold of σr(L) for correct identification
of outlier columns with high probability also increases, as we expect. On the other hand, when we rescale σr(L) by

√
γn2ηN in panel (b), all curves

corresponding to different values of σN are aligned together. In addition, when the ratio σr(L)√
γn2ηN

goes beyond 1, the probability of correct outlier detection
is 1, which justifies our assumption (n1) in this case. Analogous results are observed for Laplace noise as well.
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Fig. 2. Demonstration of the probability of success Pr(ÎC = IC) versus column subsample parameter γ (a and b) and row sampling parameter m (c and
d) for noisy observations under different settings of rank r of L. (b) and (d) provide the results with rescaling of γ by rµV log(r)

nL
and m by r + 1 + log k

respectively. We fix N as Gaussian noise with i.i.d. entries with σN = 0.01. We generate L = [UVT 0n1×k] and C = [0n1×nL W], where U ∈ Rn1×r

and V ∈ RnL×r have i.i.d. N (0, 1) entries and W ∈ Rn1×k has i.i.d. N (0, r) entries. When r increases, the column subsampling parameter γ also needs
to increase for correct outlier identification with high probability. If we normalize γ with rµV log r

nL
, which is generally the dominating term, then all curves

corresponding to different ranks r align together, as shown in panel (b). Further, high probability of success is achieved when the ratio γ/ rµV log r
nL

> 1.
Analogously, increasing m facilitates the accurate recovery for increasing r, and the ratio m/(r + 1 + logn2) > 1 facilitates correct recovery with high
probability, as shown in panel (d).
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Fig. 3. Demonstration of the performance using different combinations of
m and γ for noisy observations via (a) phase transition and (b) contour plot
of timing evaluation of OP. We fix n1 = 500, n2 = 1000, k = 0.2n2,
nL = n2 − k, r = 10, and λ = 0.4, and generate L, C, and the
Gaussian noise N in the same way in Figure 2. The pair (m, γ) = (500, 1)
corresponds to operating on the full-size data matrix M. We first provide
the “phase transition” behavior for all combinations of m and γ, and a fixed
λ = 0.5 in OP. Then we record the CPU execution time of Algorithm 1. The
values on contour lines are the speed-ups of algorithm compared with the
full size model, i.e. (m, γ) = (500, 1). We can see that our approach shows
significant advantage in terms of computational efficiency over the full data
model when m and γ are small. For example, when (m/n1, γ) = (0.1, 0.1),
our approach is > 100 times faster than that using the full data. Another
interesting observation is that the full size model (m, γ) = (500, 1) is not
the slowest here, while the nearly full size model is the slowest. This is
because in the full data model, we do not need to construct the random
projection matrices and the corresponding projection operations. In real data
applications, such as the salient image feature detection, speedup of over 100
times can be achieved with comparable performances [9].
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