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I. INTRODUCTION

Phase retrieval deals with the recovery of an n-dimensional signal
x0 ∈ Hn, with H either R or C, from m ≥ n magnitude
measurements of the form [1]

bi = |〈ai,x0〉|, i = 1, 2, . . . ,m, (1)

where ai ∈ Hn, and i = 1, 2, . . . ,m are measurement vectors.
While the recovery of x0 from (1) is non-convex, it can be

convexified via “lifting” methods that convert the phase retrieval
problem to a semidefinite program (SDP). The resulting formulation
is convex, but this convexity comes at a high cost: lifting methods
square the dimensionality of the problem. As a result, many practical
phase retrieval algorithms sacrifice convexity and operate in the
original feature space using non-convex methods [2]–[6].

We propose PhaseMax, a formulation of the phase retrieval prob-
lem that avoids lifting [7], [8]. Suppose we have some intelligent
“guess” x̂ ∈ Hn of the solution to (1). We recover the signal x0 by
solving the following convex optimization problem:

(PhaseMax)

{
maximize

x∈Hn
〈x, x̂〉<

subject to |〈ai,x〉| ≤ bi, i = 1, 2, . . . ,m.

Here, 〈x, x̂〉< denotes the real-part of the inner product between the
vectors x and x̂. The main idea behind PhaseMax is to find the
vector x that is most aligned with the approximation vector x̂ and
satisfies a convex relaxation of the measurement constraints in (1).

Surprisingly, PhaseMax provably recovers the true solution to (1)
with high probability. We have the following theorem:

Theorem 1. Consider the case of recovering a signal x ∈ Hn
from m measurements of the form (1) with measurement vectors
ai, i = 1, 2, . . . ,m, sampled independently and uniformly from the
unit sphere. Let angle(x0, x̂) = arccos

(
〈x0,x̂〉<
‖x0‖2‖x̂‖2

)
be the angle

between the true vector x0 and the “guess” x̂, and define the constant

α = 1− 2
π
angle(x0, x̂)

that measures the accuracy of the initialization. If H = C, then the
probability that PhaseMax recovers the true signal x0 is at least

1− exp

(
− (αm− 4n+ 1)2

2m

)
(2)

whenever αm > 4n − 1. In the real case (H = R), the probability
of exact recovery is at least

1− exp

(
− (αm− 2n+ 1)2

2m

)
(3)

whenever αm > 2n− 1.

We emphasize that Theorem 1 contains no unspecified constants,
and accurately characterizes the empirical behavior of PhaseMax. See
Figure 1 for a comparison of the empirical and theoretical success
recovery probability in a n = 500 dimensional complex system.
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Fig. 1. Comparison between the empirical success probability (solid lines)
and our theoretical lower bound (dashed lines) for varying angles between the
true signal and the approximation vector.

II. CHOOSING AN INITIALIZATION

Several methods exists for choosing an initial guess x̂. We discuss
two methods here.

A. Random Guess

A random guess will (with probability 1) have positive correlation
with the true signal x0. As shown in [7], the expected cosine
distance between the true signal and a random guess is approximately
(πn)−

1/2. Since the accuracy of a random guess decays slowly
with increased dimension, a superlinear number of measurement are
needed to attain exact reconstruction. In fact, exact reconstruction
holds with high probability when m ≥ (πn)

3/2.

B. Spectral Initializers

More sophisticated initializers include the (truncated) spectral
initializer [2], [5], the Null initializer [9], or the orthogonality-
promoting method [6]. For example, given a lower bound β > 0,
the spectral method [2] can guarantee angle(x0, x̂) > β with high
probability for m > c0n, where c0 is some constant depending only
on β. Combining this result with Theorem 1 shows that the truncated
spectral initializer enables PhaseMax to succeed with high probability
when m > max{4/α, c1}n.

III. CONCLUSION

Put simply, PhaseMax convexifies phase retrieval problems without
the pain of lifting. Furthermore, the analysis of PhaseMax rests on
a variety of new methods that provide extremely tight reconstruction
bounds without any unspecified constants.

ACKNOWLEDGMENTS

The work of T. Goldstein was supported in part by the US National
Science Foundation (NSF) under grant CCF-1535902 and by the US
Office of Naval Research under grant N00014-17-1-2078. The work
of C. Studer was supported in part by Xilinx Inc. and by the US NSF
under grants CCF-1535897 and ECCS-1408006.



REFERENCES

[1] E. J. Candès, T. Strohmer, and V. Voroninski, “PhaseLift: Exact and stable
signal recovery from magnitude measurements via convex programming,”
Commun. Pure Appl. Math., vol. 66, no. 8, pp. 1241–1274, 2013.

[2] P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating
minimization,” in Adv. Neural Inf. Process. Syst., 2013, pp. 2796–2804.

[3] P. Schniter and S. Rangan, “Compressive phase retrieval via generalized
approximate message passing,” IEEE Trans. Sig. Process., vol. 63, no. 4,
pp. 1043–1055, Feb. 2015.

[4] E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger
flow: Theory and algorithms,” IEEE Trans. Inf. Theory, vol. 61, no. 4,
pp. 1985–2007, Feb. 2015.

[5] Y. Chen and E. Candès, “Solving random quadratic systems of equations
is nearly as easy as solving linear systems,” in Adv. Neural Inf. Process.
Syst., 2015, pp. 739–747.

[6] G. Wang, G. B. Giannakis, and Y. C. Eldar, “Solving systems of random
quadratic equations via truncated amplitude flow,” arXiv: 1605.08285, Jul.
2016.

[7] T. Goldstein and C. Studer, “Phasemax: Convex phase retrieval via basis
pursuit,” arXiv preprint arXiv:1610.07531, 2016.

[8] S. Bahmani and J. Romberg, “Phase retrieval meets statistical learning
theory: A flexible convex relaxation,” arXiv preprint arXiv:1610.04210,
2016.

[9] P. Chen, A. Fannjiang, and G.-R. Liu, “Phase retrieval with one or
two diffraction patterns by alternating projections of the null vector,”
arXiv:1510.07379, Apr. 2015.


