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We consider the problem of recovering an unknown
signal x ∈ Cn from measurements y = |a~ x|, where
a ∈ Cm (m ≥ n) is a given kernel, ~ denotes the cyclic
convolution. Let Ca ∈ Cm×m be the circulant matrix
generated by a, and let A ∈ Cm×n denote the first n
columns of Ca. The observation model can also be written
in the matrix-vector form as

y = |a~ x| = |Ax| .

This problem is motivated by applications such as channel
estimation [1], noncoherent optical communication [2],
and underwater acoustic communication [3]. In these
scenarios, the phase measurements can be very noisy
and unreliable, while their magnitudes are often much
easier to obtain. On the other hand, we know that if A is
generic, the general phase retrieval [4], [5], [6] is O(mn)
per iteration cost. In comparison, the benign structure
of the convolutional model allows us to design much
more efficient methods with O(m logm) memory and
computational cost, by using the fast Fourier transform
for matrix-vector products.
In this work, we consider a generic random model in

which the kernel a = [a1, · · · , am]> is complex Gaussian

ak =
1√
2
(Xk + iYk) , Xk ∼ N (0, 1), Yk ∼ N (0, 1),

and we solve the problem by minimizing a weighted1

nonconvex and nonsmooth objective

f(z) =
1

2m
‖b� (y − |Az|)‖2 , (.1)

where the weights b = ζ
1/2

σ2 (y) that

ζσ2(t) = 1− 2πσ2ξσ2(t), ξσ2(t) =
1

2πσ2
exp

(
− |t|

2

2σ2

)
,

and σ2 > 1/2 is a numerical constant.
We analyze a local2 (generalized) gradient descent

method. The same as [9], [10], the algorithm is initialized
via a spectral method. Although the objective (.1) is
nonsmooth, by defining the phase of u ∈ C as

exp (iφ(u))
.
=

{
u/ |u| if |u| 6= 0,

1 otherwise.

1The introduction of weights is purely for the ease of analysis.
2It would be nicer to characterize the global geometry of the

problem as we did in [7], [8]. However, the nonhomogeneity
of ‖Cz‖ over the space causes tremendous difficulties for
concentration with m ≥ Ω(npoly logn) samples.

the generalized Wirtinger gradient [11] of (.1) can be
uniquely specified as

∂

∂z
f(z)

.
=

1

m
A∗ diag (b) [Az − y � exp (iφ(Az))] ,

where � denotes the Hadamard product. Thus for the
kth iterate, the gradient descent step takes the form

zk+1 = zk − τ
∂

∂zk
f(zk),

where τ is the stepsize. If we define

dist(z,x)
.
= inf
θ∈[0,2π)

∥∥∥xeiθ − z
∥∥∥ ,

then we show that gradient descent converges linearly
in a small region close to the optimal by the following
theorem.

Theorem 0.1: Whenever m ≥ C0n log
31 n, spectral

method [9], [10] produces an initialization z0 that satisfies

dist (z0,X ) ≤ c0 log−6 n ‖x‖

with probability at least 1 −

c1 min

{
√
m
−c2 ,

(
m1/4

)−c3 log3/4 n
}
. Starting

from the initialization z0, whenever m ≥
C1
‖Cx‖2

‖x‖2 max
{
log17 n, n log4 n

}
, with σ2 = 0.51 and

stepsize τ = 2.02, we have for every k ≥ 1

dist (zk,X ) ≤ (1− δ)k dist (z0,X ) , (.2)

holds for some small constant δ ∈ (0, 1) with probability
at least 1 − c4m−c5 . Here, c0, c1, c2, c3, c4, c5 and C0, C1

are some positive numerical constants.
In Theorem 0.1, a dependence of the sample complexity
m on ‖Cx‖ seems necessary; please see experiments
in Fig. 1 for the demonstration. Our proof is based on
ideas from decoupling theory [12], the restricted isometry
property of random circulant matrices [13], and a new
analysis of alternating projection method due to [14]. More
specifically, instead of using restricted strong convexity as
[10], [15] to show that the iterates contract, our analysis is
largely inspired by the recent work of [14]. This argument
controls the bulk effect of phase errors uniformly in a
neighborhood around the ground truth signal x, avoiding
the need to analyze high-order moments of the highly
structured and inhomogeneous random process |Az|.
Finally, Fig. 2 demonstrates the proposed method on

a real image. As we observe from Fig. 1 and Fig. 2, the
sample complexity in Theorem 0.1 loose by at least a few
log factors. Improving this is a direction for future work.



Fig. 1: Phase transition for signal x ∈ Cn with different ‖Cx‖. We normalize the signal with ‖x‖ = 1, fix
n = 1000 and vary the ratio m/n. (a) shows the case when x is a standard basis vector; (b) shows the case
when x is uniformly generated on the complex sphere CSn−1, where ‖Cx‖ ∼ O(‖x‖); (c) shows the case
when x = 1√

n
1n, such that ‖Cx‖ =

√
n ‖x‖.

Fig. 2: Experiment on real images. The image is of size 200×300, we vectorize the image and use m = 5n logn

samples for reconstruction. The kernel a ∈ Cm is randomly generated as complex Gaussian. We run power
method for 100 iterations for initialization, and stop the algorithm once the error is smaller than 1× 10−4. It
takes 197.08s to reconstruct all the RGB channels. Methods using general Gaussian measurements A ∈ Cm×n
could easily run out of memory on a personal computer for problems of this size.
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