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Problem Setting. In recent years there has been a large amount
of work on the generalized phase retrieval (PR) problem: recover
an n-length discrete signal (vector) x from measurements |ai′x|2,
i = 1, 2, . . . ,m [1], [2], [3], [4], [5]. Of these, a recent iterative
algorithm, truncated Wirtinger Flow (TWF) [5], achieves the best
computational and sample complexity. It can recover x from only
m ≥ cn measurements. Here, and throughout, the letter c is reused
to denote different numerical constants. Two recent modifications of
TWF [6], [7] have the same order complexities but better empirical
performance. By imposing structure on x, the sample complexity can
be improved. Most work on this direction imposes sparsity, e.g., [8].

In this abstract and [10], we study “low-rank phase retrieval
(LRPR)” defined as follows. Instead of a single vector x, we have a
set of q vectors, x1,x2, . . . ,xq that are such that the n× q matrix,

X := [x1,x2, . . . ,xq],

has rank r � min(n, q). For each xk, we observe a set of m
measurements of the form

yi,k := |ai,k′xk|2, i = 1, 2, . . .m, k = 1, 2, . . . , q. (1)

The measurement vectors, ai,k, are mutually independent. The goal
is to recover the matrix X from these mq measurements yi,k. In
some applications, the goal may be to only recover the span of the
columns of X , range(U). We call this the phaseless PCA problem.
Contribution 1: Algorithms. We develop two iterative algorithms
for solving the LRPR problem. Our solution approach relies on the
fact that a rank r matrix X can always be expressed (non-uniquely)
as X = UB where U is an n×r matrix with mutually orthonormal
columns. The first step of both methods is a spectral initialization
step, motivated by TWF [5], for initializing U , and then, the columns
of B. We summarize this in Algorithm 1 (LRPR-init). The notation
1E refers to the indicator function on the event E . LRPR-init relies

Algorithm 1 Low Rank PR Initialization (LRPR-init)
Set r̂ = arg maxj(λj(YU )− λj+1(YU )) with

YU :=
1

mq

m∑
i=1

q∑
k=1

yi,kai,kai,k
′
1{

yi,k≤9

∑
i yi,k
m̃

}.
1) Compute Û as the top r̂ eigenvectors of YU .
2) For each k = 1, 2, . . . , q,

a) compute v̂k as the top eigenvector of Yb,k := Û ′MkÛ
where Mk := 1

m

∑
i yi,kai,kai,k

′.

b) compute ν̂k :=
√

1
m

∑
i yi,k; set b̂k = v̂kν̂k

Output Û . Output x̂k := Û b̂k for all k = 1, 2, . . . , q.

on two key ideas. First, E[YU ] = c1
q
XX ′ + c2I , where c1 and c2

are positive scalars, and thus, the span of its top r eigenvectors is
equal to range(U). Hence, by law of large numbers [11], with mq
large enough, we expect that range(Û) ≈ range(U). Second, if Û
is independent of Mk, then E[Yb,k|Û ] = Û ′[c3xkx

′
k + c4I]Û . If

Û = U , then Û ′xk = bk and, in this case, the top eigenvector of
E[Yb,k|Û ] is proportional to bk. With just range(Û) ≈ range(U),

this may not hold, but ÛÛ ′xk will still be a good approximation
of xk. By law of large numbers [11], the same will be true for x̂k
given in LRPR-init. We show the power of LRPR-init in Fig. 1a.

The remainder of the algorithm is developed in one of two
ways: using a projected gradient descent strategy to modify the
TWF iterates (LRPR1); or developing an alternating minimization
algorithm, motivated by AltMinPhase [3], that directly exploits the
decomposition X = UB (LRPR2). Via extensive experiments, we
show that both LRPR1 and LRPR2 have better sample complexity
than TWF; with LRPR2 exhibiting the best performance; see Figs.
1b, 1c. Both also significantly outperform TWFproj (project TWF
initialization onto space of rank r matrices, and do the same for each
TWF iteration). We show their power for recovering an approximately
low rank video sequence from CDP measurements in Figs. 2, 3.
Contribution 2: Initialization Error Guarantees. Our most im-
portant contribution is sample complexity bounds for LRPR-init.
We state our key result next. It assumes that we use different
(independent) sets of measurements for recovering U and B. This
ensures independence between Û and Mk in Algorithm 1.

Define ρ :=
maxk ‖xk‖22
1
q

∑
k ‖xk‖22

, let 1
q
XX ′

EVD
= UΛ̄U ′ be its reduced

eigenvalue decomposition (EVD), and let κ be its condition number.
Also, let N (0,Σ) denote a Gaussian distribution with zero mean and
covariance Σ and let dist(z1,z2) := minφ∈[0,2π] ‖z1− e

√
−1φz2‖2

denote the phase-invariant distance between two vectors.
Theorem 1. For each column k of the rank r matrix X , we observe,
yi,k := (ai,k

′xk)2 where ai,k
iid∼ N (0, I), for i = 1, 2, . . . ,m.

For each k, we also observe yBi,k := (aBi
′xk)2 where aBi

iid∼
N (0, I), for i = 1, 2, . . . , m̃. The sets of vectors {aBi }i=1,2,...,m̃

and {ai,k}i=1,2,...,m, k=1,2,...,q are mutually independent. Consider
Algorithm 1 with yi,k replaced by yBi,k in step 2.

Assume that Λ̄ is such that λ̄j − λ̄j+1 ≤ 0.9λ̄min and κ ≤ 10.
Assume that r ≤ cn1/5. For an ε < 1, if

m̃ ≥ c
√
n

ε2
, m ≥ cκ2 · r4 logn(log m̃)2

ε2
, mq ≥ cρ2κ2 · nr4(log m̃)2

ε2
,

then, with probability at least 1− 2 exp(−cn)− 16q
n4 ,

1) r̂ = r, and
2) for all k = 1, 2, . . . , q, dist(xk, x̂k)2 ≤ cε‖xk‖22.

When the goal is to only recover U with subspace error,
SE(Û ,U) := ‖(I − ÛÛ ′)U‖2, at most ε (and not the xk’s), the
required lower bounds on m can be significantly relaxed.

Corollary 2. In the setting of Theorem 1, if m̃ = 0, m ≥ cκ2·r2 logn
ε2

and mq ≥ cρ2κ2·nr2
ε2

, then, with same probability, SE(Û ,U) ≤ cε.

Discussion. The above results show that, if the goal is to only
initialize U with subspace recovery error below a fixed level, say
ε = 1/4, then a total of mq = cnr2/ε2 = 16cnr2 iid Gaussian
measurements suffice with high probability (whp). When r is small,
nr2 is only slightly larger than nr which is the minimum required by
any technique to recover the span of U . If the goal is to also initialize
the xk’s with normalized error below say ε = 1/4, then more
measurements are needed but still significantly fewer than m = cn,
e.g., if r ≤ c logn and q = cn, then m+ m̃ = 16c

√
n suffices.



(a) m = 8n, q = 1000 (b) m = 0.8n, q = 1000 (c) m = 0.6n, q = 1000

Fig. 1: Plot of reconstruction error, NormErr(X̂t,X), as a function of time taken until iteration t. We used complex Gaussian measurement vectors,
n = 100, r = 2 and q = 1000 to generate the data. In Fig. 1a, we show the power of the proposed LRPR initialization. When this is used to initialize
TWF (LRPR+TWF), it converges much more quickly than the original TWF. This figure used m = 8n (enough measurements for basic TWF to also
converge). If m is reduced to m = 0.8n measurements (Fig. 1b), neither of TWF or LRPR+TWF converge. TWFproj also does not converge because its
initialization error is larger. In contrast, both of LRPR1 and LRPR2 converge. LRPR1 is significantly faster than LRPR2 because its per iteration cost is
lower. If m is reduced further to m = 0.6n (Fig. 1c), then LRPR1 does not converge whereas LRPR2 still does.
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Fig. 2: This figure shows the power of the proposed methods for recovering a real video from coded diffraction pattern (CDP) measurements. First
column: frames 1, 50 and 104, of the original plane video. Next three columns: frames recovered using the various methods from m = 3n CDP
measurements. Both LRPR1 and LRPR2 significantly outperform TWFproj and TWF. This experiment is inspired by an analogous experiment for
recovering a regular camera image from CDP measurements reported in [5, Fig. 2]. While this is not a real practical application since the video used is a
regular camera video of a moving airplane, this experiment is done only to illustrate the fact that many real image sequences are indeed approximately
low-rank; and that our algorithm has significant advantage over single vector PR methods for jointly recovering this approximately low-rank video.
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Fig. 3: This figure shows the power of LRPR2 for recovering a real video from coded diffraction pattern (CDP) measurements. First column: frames 2,
53 and 102, of the original bacteria video. Next three columns: frames recovered using the various methods from m = 3n CDP measurements.
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