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I. BACKGROUND

Phase retrieval is often abstracted as the problem of finding an
(approximate) solution x̂ to the system of quadratic equations

ym ≈ |a∗
mx|2 , m = 1, 2, . . . ,M , (1)

where ams are given measurement vectors and approximate equations
are due to noise. The existing convex programming methods for
phase retrieval (e.g., PhaseLift [1]) utilize a lifting transform such as
xx∗ 7→X to convert the quadratic equations above to equations that
are linear in X . These methods then use semidefinite programming
(SDP) to find a positive semidefinite matrix that is consistent with
the linearized equations and has a small trace norm inducing the
low-rank structure of the desired lifted solution. The main drawback
of these SDP-based methods is that their computational cost does
not scale well with the dimension of problem. Iterative non-convex
methods such as the AltMinPhase [2] and the Wirtinger Flow [3]
methods operate in the natural domain of the problem and thus
avoid the computational drawback of the SDP-based methods. With
proper initialization these methods produce accurate estimates of the
signal. However, they are often not robust to changes in the model
specifications (e.g., measurement distribution) which is the typical
consequence of relying on “non-convex optimization”. Furthermore,
their analysis is generally tailored for a specific problem and is
usually difficult to generalize.

In this paper, we propose a new convex relaxation for the phase
retrieval problem that operates in the natural domain of the problem.
The proposed method has a significantly lower computational cost
than the SDP-based methods and competes with the non-convex
iterative methods. It is also flexible in analysis and implementation
as it relies on convex programming.

Shortly after we proposed and analyzed this new method in [4],
the same algorithm is analyzed independently in [5] using different
techniques. An alternative proof in the case of real-valued signals
also appeared later in [6].

II. CONVEX RELAXATION USING AN ANCHOR VECTOR

Suppose that we observe quadratic measurements y1, y2, . . . , ym
as in (1) for the ground truth x? ∈ CN . As illustrated in Figure 1,
with no measurement noise, x? can be viewed as an extreme point
of the convex set K = ∩Mm=1Sm obtained by intersecting the slabs

Sm =
{
x : |a∗

mx|2 ≤ ym
}
.

To distinguish x? from the other extreme points we utilize an anchor
vector. A vector a0 is an anchor vector with parameter δ ∈ (0, 1) if

|a∗
0x?| ≥ δ ‖a0‖2 ‖x?‖2 . (2)

In words, the anchor vector has a “non-trivial” correlation with
the ground truth. If the measurements are randomized, an anchor
vector obeying (2) can be constructed from the given measure-
ments. For example, the principal eigenvector of the matrix S =

1
M

∑M
m=1 ymama∗

m or variations of it, with high probability, can
be an anchor vector obeying (2). These data-driven anchor vectors
are previously used as the initialization for some non-convex phase
retrieval methods [2, 3, 7].

Given the anchor vector a0, the extreme point of K that is best
aligned with a0 can be found by the convex program

argmax
x

Re (a∗
0x) (3)

subject to |a∗
mx|2 ≤ ym , m = 1, 2, . . . ,M .

The convex program (3) is our proposed estimator for phase retrieval
even with noisy measurements. We assume that the noise is bounded
and non-negative; for a positive parameter η representing the SNR
we have

0 ≤ ym − |a∗
mx?|2 ≤ η−1 ‖x?‖22 , m = 1, 2, . . . ,M .

The following lemma characterizes a sufficient condition to guarantee
accuracy of the estimate produced by (3). Henceforth, without loss
of generality, we assume that the ground truth x? is unit norm (i.e.,
‖x?‖2 = 1).

Lemma 1. Define Rδ
def
=
{
h : ‖h− (x∗

?h)x?‖2 ≥ δ |Im (x∗
?h)|

}
.

The estimate produced by (3) obeys ‖x̂− x?‖2 ≤ η
−1, if there is no

h ∈ Rδ with ‖h‖2 > η−1 such that

Re (a∗
0h) ≥ 0

|Re (ama∗
mx?,h)| ≤

1

2
η−1 , m = 1, 2, . . . ,M ,

hold simultaneously.

For measurements that are drawn i.i.d. from a distribution with
mild regularity conditions, we have shown, using classic results
from statistical learning theory [8] on linear classification, that the
sufficient condition stated in Lemma 1 holds with high probability.
The requirement is that the number of measurements (i.e., M ) should

grow with the dimension of the problem (i.e., N ) as M
δ

& N with the
hidden constant factor depending on the parameter δ of the anchor
vector. The following theorem summarizes our result in the special
case where the measurements are drawn from the standard (complex)
Normal distribution.

Theorem 2. Let the measurement vectors a1,a2, . . . ,aM be
i.i.d. copies of the random vector a ∼ Normal

(
0, 1

2
I
)

+
ıNormal

(
0, 1

2
I
)
. If for ε ∈ (0, 1) the number of measurements

obeys

M ≥ Cδ
(
N + log

1

ε

)
,

where Cδ is a constant depending on δ in (2), then, with probability
≥ 1− ε, the estimate x̂ produced by (3) obeys

‖x̂− x?‖2 ≤ η
−1 .



Figure 1. The slabs S1,S2, . . . corresponding to each measurement intersect
at K. With no measurement noise, x? (and its equivalent points) are extreme
points of K which can be identified using the anchor vector a0.
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