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Abstract—This article considers the use of total variation mini-
mization for the recovery of a superposition of point sources from
samples of its Fourier transform along radial lines. We present a
theoretical result precising the link between the sampling operator
and the recoverability of the point sources.

I. INTRODUCTION

The problem of parameter estimation for superpositions of
point sources is rooted in applications such as astronomy,
NMR (nuclear magnetic resonance) spectroscopy [5], [6] and
microscopy [10], [11]. In these applications, the signal of
interest can often be modelled as point sources and limitations
in the hardware compell one to try to resolve fine details from
low frequency data. Physical constraints can sometimes restrict
observations to certain angular directions [7], [8], and in the
case of NMR spectroscopy, one is required to sample along
continuous trajectories such as radial lines.

In this article, we consider this problem under the additional
constraint that one can only sample along radial lines in the
Fourier domain. Our analysis reveals that the full total variation
minimization problem can be solved by considering a sequence
of univariate minimization problems which can be tackled via
SDP optimization [3]. Our approach is infinite dimensional in
the sense that it allows for the recovery of the point sources
without resorting to computations on a discrete grid. We show
that in dimension d, one can recover the parameters of any
superposition of M point sources by sampling its Fourier
transform along d+ 1 radial lines for almost all sets of d+ 1
radial lines. Furthermore, the number of samples we require
along each line is, up to log factors, linear with M .

II. EXACT RECONSTRUCTION USING FOURIER SAMPLING

ALONG LINES

Let d ∈ N with d ≥ 2 and let X = B(0, 1/2) ⊂ Rd be
the centered closed ball with radius 1/2. We denote by Sd−1

the sphere embedded in Rd and byM(X) the space of Radon
measures with support on X . Given x ∈ X , let δx denote the
Dirac measure at x. The Fourier transform of µ ∈ M(X) at
ξ ∈ Rd is defined by

Fdµ(ξ) =

∫
Rd

e−i2π〈ξ,x〉µ(dx).

We are interested in the recovery of a discrete measure µ0 =∑M
j=1 ajδxj where {xj}Mj=1 ⊂ X are fixed distinct points

and {aj}Mj=1 ⊂ C are random, given T samples of its Fourier
transform along d+ 1 radial lines. More precisely, for N ∈ N,

let Γ ⊂ J−N,NK with T = Card(Γ), and let Θ ⊂ Sd−1 be a
set of d + 1 elements drawn uniformly at random from some
set S ⊂ Sd−1 of non-zero spherical measure. Our observation
is a vector y0 := Φµ0 ∈ CT×(d+1), that is

Φµ := (Fdµ(kθ))(k,θ)∈Γ×Θ (II.1)

with Fdµ0(ξ) =

M∑
j=1

aje
i2π〈ξ,xj〉. (II.2)

Following [1], [2], [3], we consider the solutions to the
minimization problem

argminµ∈M(X){‖µ‖TV : Φµ = y0} (II.3)

where the total variation norm ‖ · ‖TV is defined by

‖µ‖TV = sup{Re

(∫
X

fdµ

)
: f ∈ C(X,C), ‖f‖∞ ≤ 1}.

In the case of a discrete measure µ0 =
∑M
j=1 ajδxj , the

total variation amounts to ‖µ0‖TV =
∑M
j=1 |aj |.

The following result ensures that the measure µ0 can be
recovered from Fourier samples along d+ 1 radial lines using
all the Fourier samples up to frequency N , which is inversely
proportional to νmin := infθ∈S mini 6=j dT(〈θ, xj〉, 〈θ, xi〉)
(where dT is the canonical distance on the torus T = R/Z).
Theorem II.1. Assume that νmin > 0 and let N = d2/νmine.
Then,

1) If Γ = J−N,NK, then µ0 is the unique solution to (II.3).
2) If Γ consists of m indices drawn uniformly at random

from J−N,NK, where

m & max{log2(N/δ),M log(M/δ) log(N/δ)},

and if {sign(aj)}Mj=1 are drawn i.i.d. uniformly at ran-
dom on {z ∈ C : |z| = 1}, then with probability
exceeding 1 − (d + 1)δ, µ0 is the unique solution to
(II.3).
Moreover, µ0 can be recovered from the resolution of the
1-dimensional problems

argminρ∈M(T){‖ρ‖TV : (F1ρ)Γ = (Fdµ0){θ}×Γ} (II.4)

The proof relies on the construction of a dual certificate, as
a sum of monodimensional dual certificates built from [4] and
concentration inequalities.
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