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I. INTRODUCTION

We begin with the canonical sparse estimation problem

x∗ = argmin
x
‖y −Φx‖22 + λ‖x‖0, (1)

where y ∈ Rn is an observed vector, Φ ∈ Rn×m is some known
dictionary of basis vectors with m > n, ‖·‖0 denotes the `0 sparsity-
promoting norm, and λ is a trade-off parameter. Although crucial to
many applications [1], [2], [3], [4], [5], [6], solving (1) is NP-hard.
Popular approximations include convex relaxations such as `1-norm
regularization [7], [8], [9] and iterative hard-thresholding (IHT) [10],
[11]. However, a core weakness underlies them all: If the columns of
Φ are highly correlated, then estimation of x∗ may be poor.

Interestingly, many existing sparse estimation implementations
involve an update rule comprised of a fixed, linear filter followed
by a non-linear activation function that promotes sparsity, both fea-
tures of typical deep neural network layers. Consequently, algorithm
execution can be interpreted as passing an input through a deep
network with constant filters (dependent on Φ) at every layer [12],
[13], which is also tantamount to a simple form of recurrent network.
This association immediately suggests that we consider substituting
discriminatively learned filters in place of those inspired by the
original sparse recovery algorithm. For example, it has been argued
that, given access to a sufficient number of {x∗,y} pairs, a trained
network may be capable of producing quality sparse estimates with
a few number of layers [12], [14], [15], [16].

In each of these cases however, the initial archetype is a sparse
estimation algorithm known to be highly sensitive to data correlations,
e.g., convex relaxations, IHT, etc. But if our ultimate goal is to learn
a new ‘algorithm’ that efficiently compensates for structure in Φ, it
seems reasonable to invoke iterative approaches known a priori to
handle such correlations directly as our template for learned network
layers. One important example is sparse Bayesian learning (SBL)
[17], which has been shown to solve (1) even in cases where Φ
displays strong correlations [18]. Herein we demonstrate that, when
judiciously unfolded, SBL iterations can be formed into variants of
long short-term memory (LSTM) cells, one of the more popular
recurrent deep neural network architectures [19], [20]. The resulting
network dramatically outperforms existing methods in solving (1)
with a minimal computational budget.

II. CONNECTING SBL TO LSTM NETWORKS AND BEYOND

Although not originally derived this way, SBL can be implemented
using a form of iterative reweighted `1-norm optimization that
exposes interesting connections with deep learning and recurrent
LSTM cells. In general, if we replace the `0 norm from (1) with any
smooth approximation g(|x|), where g is a concave, non-decreasing
function and | · | applies elementwise, then global convergence to
some stationary point can be guaranteed using iterations of the form

x(k+1) → argmin
x
‖y −Φx‖22 + λ

∑
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In the context of SBL, there is no closed-form w
(k+1)
i update except

in special cases [21]. But if we allow for additional latent structure
akin to the memory unit of LSTM cells, a viable recurrency emerges
for computing these weights and elucidating their effectiveness in
dealing with correlated dictionaries. In particular we have:

Proposition 1. The weights w(k+1) invoked by the iterative
reweighted `1 form of SBL satisfy(
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Unlike traditional iterative reweighted sparsity algorithms [22],

with SBL we see that the i-th weight wi is not dependent solely
on the value of the i-th coefficient xi, but rather on all the latent
variables γ and ultimately prior-iteration weights w as well, linking
the fate of each sparse coefficient such that correlation structure can
be properly accounted for in a progressive fashion. More concretely,
from (4) it is immediately apparent that if φi ≈ φi′ for some indeces
i and i′ (meaning a large degree of correlation), then it is highly
likely that wi ≈ wi′ . This is simply because the regularized residual
error that emerges from solving (4) will tend to be quite similar
when φi ≈ φi′ . In this situation, a suboptimal solution will not be
prematurely enforced by weights with large, spurious variance across
a correlated group of basis vectors. A crucial exception occurs when
γ is highly sparse, or nearly so, in which case there are limited
degrees of freedom with which to model small differences in each
φi; however, such cases can generally only occur when we are in
the neighborhood of ideal, maximally sparse solutions, when different
weights are actually desirable for resolving the final sparse estimates.

Importantly, the additional latent variables, when structured as we
have done in (4), also closely mimic the behavior of the latent
state in an LSTM cell, and the associated gating mechanisms that
allow for incrementally storing or updating learned representations
(akin to incrementally accruing the correct sparsity profile). In
fact, both the required optimizations from (2) and (4) can be
implemented/approximated with simple recurrent networks based on
iterative thresholding/shrinkage algorithms, while their combination
requires an LSTM-like architecture or gated feedback extensions [20].
These can be viewed as learning momentum-like terms [7] and/or
optimal transitions between inner and outer optimization loops. For
detailed correspondences and further technical analyses see [23].

III. BROADER IMPLICATIONS

Overall, the progression from iterative thresholding algorithms to
SBL mirrors the progression from simple, vanilla-flavored recurrent
networks to organizations of complex LSTM cells. But from a
much wider perspective, this correspondence suggests that the micro-
management of multi-loop iterative algorithm trajectories can actually
be learned, as opposed to existing handcrafted algorithms with fixed
inner/outer loop scheduling that may be suboptimal in terms of both
speed and estimation accuracy. For more discussion, please see [23].
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Fig. 1. Empirical results demonstrating the utility of our adaptations.
Comparisons follow the set-up from [16][Section 7.2], where the goal is to
recover maximally sparse (or minimal `0 norm) feasible solutions to some
system y = Φx, with columns of Φ highly correlated by design. This is
equivalent to solving (1) with λ small. Training pairs {x∗,y} are randomly
generated using the linear forward model, and a network is trained to learn
the inverse mapping from y = Φx∗ to x∗. We invoke a particular gated
feedback (GF) LSTM architecture from [20] adapted to reflect unfolded SBL
iterations, followed by a final softmax layer for predicting support patterns.
Two stacked recurrent layers are utilized, to model inner and outer algorithmic
loops, which are unfolded for only 11 iterations leading to efficient runtime
with test data (see below). Recovery results are shown as d , ‖x∗‖0 is
varied. The accuracy metric, as defined in [16], measures the percentage of
correctly identified supporting elements of x∗ contained among the largest
d values of the network output. We observe that our approach significantly
outperforms both a rudimentary LSTM network we explore in [16], which
represents the best existing learned deep network structure for this task (albeit
without rigorous motivation), as well as SBL, the best pure optimization-
based approach we have found for handling this type of correlated dictionary.
Other approaches, such as `1 minimization, IHT, or learned variants of these
[12], [15], have a success rate below 0.7 and hence do not appear in the
figure. Additional testing conditions reveal similar improvements afforded by
the proposed GFLSTM approach [23]. Note also that a recent interesting
modification of approximate message passing can handle certain specialized
forms of dictionary correlation [24]; however, the approach does not work
with the types of strong correlation we have utilized for our experiments,
with results inferior to the `1 norm solution.

TABLE I
AVERAGE PER-SAMPLE RUNTIMES (IN SECONDS) TO PRODUCE SPARSE

ESTIMATES. WITH THE PROPOSED NETWORK, ONCE TRAINING IS
COMPLETED, THE FINAL NETWORK IS EXTREMELY EFFICIENT AT

PRODUCING SPARSE ESTIMATES GIVEN NOVEL INPUTS.

IHT `1 norm SBL Ours-GFLSTM
runtime(sec) 0.0329 0.0766 0.1144 2.481× 10−5
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Fig. 2. A useful training heuristic. Left: When training with a fixed-sized
dataset, as existing learning approaches to sparse estimation do [12], [15],
[16], there is always the risk of overfitting (note the gap between training
and validation sets with the blue learning curves). However, since we are
free to generate online as much training data as we want, at every epoch we
can always use a new, unseen batch. This simple strategy completely closes
the gap (red curves) with negligible computational overhead. Right: Resulting
improvement in performance, as measured by the percentage of trials whereby
the entire support pattern is correctly estimated, a complementary evaluation
metric to the one described above. Please see [23] for more details.
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