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Abstract—The problem of estimating and tracking low-rank subspaces
from incomplete observations has received a lot of attention recently in the
signal processing and learning communities. Popular algorithms, such as
GROUSE [1] and PETRELS [2], are often very effective in practice, but
their performance depends on the careful choice of algorithmic parameters.
Important questions, such as the global convergence of these algorithms
and how the noise level, subsampling ratio, and various other parameters
affect the performance, are not fully understood. In this paper, we present
a precise analysis of the performance of these algorithms in the asymptotic
regime where the ambient dimension tends to infinity. Specifically, we show
that the time-varying trajectories of estimation errors converge weakly to
a deterministic function of time, which is characterized as the unique
solution of a system of ordinary differential equations (ODEs.) Analyzing
the limiting ODEs also reveals and characterizes sharp phase transition
phenomena associated with these algorithms. Numerical simulations verify
the accuracy of our asymptotic predictions, even for moderate signal
dimensions.

I. INTRODUCTION

Consider the problem of estimating a low-rank subspace using partial
observations from a data stream. At any time k, an n-D sample vector
xk is generated as xk = Uck + zk, where U ∈ Rn×d is an
unknown matrix whose columns form an orthonormal basis of a d-
D subspace, ck ∼ N (0, Id) is a vector of expansion coefficients, and
zk ∼ N (0, σ2In) denotes the noise. We assume that each coordinate
of xk is observed independently with probability α. Let pk,i = 1
if the ith component of xk is observed, and pk,i = 0 otherwise.
Introducing a diagonal matrix P k = diag(pk,1, pk,2, . . . , pk,n), we
can then write our observation as yk = P kxk. Given the incomplete
observations {yk,P k}k arriving in a stream, we aim to estimate the
subspace spanned by the columns of U .

GROUSE [1] and PETRELS [2] are two well-known methods in
the literature for solving the above estimation problem. They are both
online algorithms in the sense that they provide instantaneous, on-
the-fly updates to their subspace estimates upon the arrival of a new
data point {yk,P k}. The two differ in their update rules: GROUSE
performs first-order incremental gradient descent on the Grassmannian,
whereas PETRELS can be interpreted as a second-order stochastic
gradient descent scheme. Both algorithms have been shown to be
highly effective in practice, but their performance depends on the
careful choice of algorithmic parameters such as the step size (for
GROUSE) and the discount parameter (for PETRELS). Various conver-
gence properties of these algorithms have been established in [2]–[5],
but in general, the issue of global convergence with subsampled data
is still open. Moreover, the important question of how the noise level
σ, the subsampling ratio α, and various other algorithmic parameters
affect the performance is not fully understood.

II. HIGH DIMENSIONAL ANALYSIS AND PHASE TRANSITION

In this work, we provide an exact asymptotic performance analysis
of GROUSE, PETRELS, and other related algorithms (e.g., [6], [7]) in
the large n limit. Due to space constraint, we present here the results
for PETRELS when the subspace dimension d = 1, but our analysis
can be extended to handle other algorithms and any finite d.

Let Dk ∈ Rn be the estimate provided by the algorithm at step
k. We measure the estimation performance via the squared cosine

similarity Fnk
def
= (DT

kU)2/(‖Dk‖2‖U‖2), where the superscript
n denotes the underlying ambient dimension. One can show that
E(Fnk − Fnk−1) = O(1/n). Thus, when n is large, it makes sense to
“accelerate” the time by a factor n and study the algorithm at a rescaled
time axis. To that end, we introduce the rescaled time as t = k/n, and
define fn(t)

def
= Fnbntc. This way, we embed the original discrete-time

process Fnk into the space of continuous-time stochastic processes. As
the main result of our work, we show that fn(t) will converge to a
deterministic function f(t) as n→∞. To establish this limit, we need
to introduce an auxiliary parameter Gnk

def
= nR+

k ‖Dk‖−2, where R+
k is

the pseudo-inverses of the average of the correlation matrices defined
in [2, Eq. (24)]. Similarly, we define the corresponding time-rescaled
version as gn(t) = Gnbntc.

Proposition 1. Assume that Fn0
n→∞−−−−→ f(0) > 0. Then as n → ∞,

the stochastic processes {fn(t), gn(t)}n converge weakly to the unique
solution of the following system of coupled ODEs:

df(t)

dt
= 2αf(1− f)g − σ2f(αf + σ2)g2

dg(t)

dt
= −g2(σ2g + 1)(αf + σ2) + µg,

where σ2 is the noise variance, α is the probability with which each
coordinate of the sample vectors can be observed, and µ > 0 is a
constant such that the discount parameter λ in [2] is λ = 1− µ

n
.

Using ODEs to analyze stochastic recursive algorithms has a long
history [8], [9]. An ODE analysis of an early subspace tracking
algorithm was given in [10], and this result was adapted to analyze
PETRELS for the nonsubsampled case (i.e. α = 1) [2]. Our results
in Proposition 1 differ from previous analysis not only in that it can
handle the more challenging case of incomplete observations. A more
important distinction is as follows: The previous ODE analysis in [2],
[10] keeps the ambient dimension n fixed and studies the asymptotic
limit as the step size tends to 0. The resulting ODEs involve O(n)
variables. In contrast, our analysis studies the limit as the dimension
n → ∞, and the resulting ODEs only involve 2 variables f(t) and
g(t). This low-dimensional characterization makes our limiting results
more practical to use, especially when the dimension is large.

Numerical verifications of our asymptotic results are shown in Fig-
ure 1. Figure 2 visualizes the solution trajectories of the ODEs starting
from different initial conditions. Studying the stability of stationary
points reveals the following sharp phase transition phenomenon:

Proposition 2 (Phase transition). limt→∞ f(t) > 0 if only if

µ <
(
2α/σ2 + 1/2

)2 − 1/4.

A “noninformative” solution corresponds to f(t) = 0, in which case
the estimate Dbntc and the underlying subspace U are uncorrelated.
Proposition 2 predicts a critical choice of µ (as a function of σ and
α) separating informative solutions from noninformative ones. This
prediction is confirmed numerically in Figure 3. Similar asymptotic
analysis can be carried out for GROUSE, as demonstrated in Figure 4.
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Fig. 1. Monte Carlo simulations of the PETRELS algorithm v.s. asymptotic
predictions obtained by the limiting ODEs given in Proposition 1. The error is
defined as 1 − f(t). The signal dimension is n = 104. The error bars shown
in the figure correspond to one standard deviation over 50 independent trials.
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Fig. 2. Phase portraits of the nonlinear ODEs in Proposition 1: The black
curves are trajectories of the solutions (f(t), g(t)) of the ODES starting from
different initial values. The red and blue curves represent nontrivial solutions
of the two stationary equations df(t)

dt
= 0 and dg(t)

dt
= 0. Their intersection

point is the fixed point of the dynamical system. The fixed-points of the top two
figures correspond to f(∞) > 0, and thus the steady-state solutions in these
two cases are informative. In contrast, the fixed-points of the bottom two figures
are associated with noninformative steady-state solutions with f(∞) = 0.
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Fig. 3. The grayscale in the figure visualizes the steady-state errors of the
PETRELS algorithm corresponding to different values of the noise variance
σ2, the subsampling ratio α, and the step-size parameter µ. The red curve is
the theoretical prediction given in Proposition 2 of a phase transition boundary,
below which no informative solution can be achieved by the algorithm. The
theoretical prediction matches well with numerical results.
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Fig. 4. Numerical simulations of the GROUSE algorithm [1] v.s. asymptotic
predictions given by a limiting ODE: df

dt
= τ(2α− τσ4)f −ατ(2+ τσ2)f2,

where τ > 0 is a constant such that the step size parameter ηk defined in [1] is
ηk = τ/n. In the experiments, the error is defined as 1− f(t), and the signal
dimension is n = 104. The error bars shown in the figure correspond to one
standard deviation over 50 independent trials.
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