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Abstract—We present a method to solve large-scale mixture learning
tasks from a sketch of the data, formed by random generalized empirical
moments. We give empirical and theoretical results on k-means and
Gaussian Mixture Model estimation problems.

I. INTRODUCTION

Consider samples zi ∈ Rd, 1 ≤ i ≤ n, drawn i.i.d. from a
distribution π. Given a class of hypotheses H and a loss function
` : Rd×H → R, statistical learning consists in finding the hypothesis
h∗ ∈ H that minimizes the expected risk R(h) = Eπ`(z, h). Since
the distribution π is not directly available, usual learning procedures
minimize the empirical risk instead: R̂n(h) =

∑
i `(zi, h)/n.

This traditional approach is however challenged when samples z
are high-dimensional (large d) or in great number (large n). The
first case has been dealt with using random projections [1] or feature
selection [2], while the second gave birth to online learning [3] or
coresets [4]. We advocate here that when n is large, some learning
tasks can be done using only a collection of generalized empirical mo-
ments, referred to as sketch, as a (highly) compressed representation
of the database. A simple example is Principal Component Analysis
(PCA), which can be done with only the empirical covariance. Such
sketches can be computed online, and/or in a distributed/parallel
manner, and do not require the database to be stored on one single
device.

We present here a method to perform k-means or Gaussian
Mixture Model (GMM) estimation with identity covariance from a
sketch formed by a (weighted) random sampling of the characteristic
function. Such inverse problems bear similarities with sparse recovery
in continuous spaces [5]. Define the sketching operator:

Aπ =
1√
m

[
Ez∼π exp(−iωTj z)/cωj

]m
j=1

(1)

where cωj > 0 are some weights and frequencies ωj ∈ Rd
are drawn i.i.d. from a weighted Gaussian distribution Λ(ω) ∝
c2ωN (0, σ2I). The empirical sketch used in practice is denoted
y = 1

n
√
m

[∑n
i=1 exp(−iωTj zi)/cωj

]m
j=1

.

II. MAIN RESULTS

We now present our main results on k-means and GMM estimation.
In each case, cω and σ2 are appropriately chosen and not detailed
in this abstract. Leveraging tools from kernel embeddings of distri-
butions [6] and Random Fourier features [7], our analysis is inspired
by Compressive Sensing results [8], [9], adapted to the proposed
infinite-dimensional framework.

A. k-means

In the k-means problem, each hypothesis is a set of centroids h =
{c1, ..., ck} and the loss function is `(z, h) = minl ‖z − cl‖22.
Assumptions. We restrict to a family of hypotheses where centroids
are 2ε-separated from each other and contained in a ball of radius
M , and denote Hk,ε,M the corresponding class of hypotheses.

Result. Denote h∗ ∈ Hk,ε,M the true minimizer of the expected risk
R and ĥ the hypothesis recovered from the sketch by

ĥ = argmin
h∈Hk,ε,M

min
α1,...,αk

∥∥∥y −A(∑k

l=1
αlδcl

)∥∥∥
2

(2)

where αl ≥ 0 and
∑k
l=1 αl = 1.

If m ≥ O
(
k2d3polylog(k, d) log(1/ρ ·M/ε)

)
, then with joint

probability 1− ρ on the drawing of zi and ωj it holds that

R(ĥ) . R(h∗) +O
(√

kd2/n
)
. (3)

B. Gaussian mixture with identity covariance

In the GMM learning problem, a hypothesis is a set of means
and weights h = {µ1, ..., µk, α1, ..., αk} and the loss function is
`(z, h) = − log πh(z), where πh =

∑k
l=1 αlN (µl, I) is a GMM.

Assumptions. We restrict to a class of hypotheses where means are
separated from each other and contained in a ball of radius M , and
denoteHk,M the corresponding class of hypotheses. Unlike k-means,
the separation between means cannot be as small as desired, and there
is a trade-off between the required separation and the required number
of measurements m. A few values are given in Table I.
Result. Denote h∗ ∈ Hk,M the true minimizer of the expected risk
R and ĥ the hypothesis recovered from the sketch by solving

ĥ = argmin
h∈Hk,M

‖y −Aπh‖2 . (4)

If the number of measurements m is large enough (see Tab. I),
with joint probability 1−ρ on the drawing of zi and ωj it holds that

R(ĥ)−R(h∗) . inf
h∈Hk,M

‖π − πh‖TV +O
(√

1/n
)

(5)

where the O hides some dependencies in k, d (roughly behaving like
m in Tab. I). The bound also involves the best approximation of π
by a GMM for the TV norm (L1 norm for densities).

III. EXPERIMENTAL RESULTS

The optimization problems (2) and (4) are non-convex and seem
hard to solve exactly. Heuristically, a greedy algorithm inspired by
sparse recovery referred to as Compressive Learning OMP (CLOMP)
[10]–[12] has been previously shown to perform well. We compare
a Matlab implementation of CLOMP available at [13] with Matlab’s
kmeans function and VLFeat’s [14] gmm function.

In Fig. 1, the sketched approach is seen to lead to tremendous
savings in time of execution and memory consumption when the
number of items n is large, while achieving the same precision
as the corresponding traditional approach for a limited number of
measurements m ≈ O (kd). Fig. 2 further confirms that m ≈ O (kd)
is empirically sufficient, hence the theoretical guarantees for m &
O
(
k2d2

)
are probably pessimistic.

Further work will combine the sketching technique with
dimensionality-reduction methods to treat both large d and n.



TABLE I
TRADE-OFF BETWEEN REQUIRED SEPARATION OF MEANS AND NUMBER

OF MEASUREMENTS IN THE GMM LEARNING PROBLEM.

Separation of means Number of measurements

O
(√
d log k

)
m ≥ O

(
k2d2polylog(k, d) log(M/ρ)

)
O

(√
d+ log k

)
m ≥ O

(
k3d2polylog(k, d) log(M/ρ)

)
O

(√
log k

)
m ≥ O

(
k2d2edpolylog(k, d) log(M/ρ)

)
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Fig. 1. Relative memory consumption (left), time of estimation (center)
and precision (right) for compressive k-means (top) and GMM estimation
(bottom) with k = 10 components in dimension d = 10, compared to
Matlab’s kmeans and VLFeat’s gmm functions (dotted black lines).

Fig. 2. Relative precision for k-means (top) and GMM estimation (bottom)
with respect to the relative number of measurements m/(kd). On the left
k = 10 and on the right d = 10.
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