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Abstract—We describe a convergence acceleration technique for
generic optimization problems. Our scheme computes estimates of the
optimum from a nonlinear average of the iterates produced by any
optimization method. The weights in this average are computed via a
simple and small linear system, whose solution can be updated online.

I. INTRODUCTION

Suppose we want to solve the following optimization problem

minx∈Rn f(x) (1)

in the variable x ∈ Rn, where f(x) is strongly convex with respect to
the Euclidean norm with parameter µ, and has a Lipschitz continuous
gradient with parameter L with respect to the same norm. Assume
we solve this problem using an iterative algorithm of the form

xi+1 = g(xi), for i = 1, ..., N , (2)

where xi ∈ Rn and N the number of iterations and g the algorithm,
with fixed-point x∗. Here, we will focus on the problem of estimating
the solution to (1) (which is also x∗) by tracking only the sequence
of iterates xi produced by g. This will lead to an acceleration of
the speed of convergence, since we will be able to extrapolate more
accurate solutions without any calls to the oracle g(x).

II. MINIMAL POLYNOMIAL EXTRAPOLATION

The main idea of Minimal Polynomial Extrapolation (MPE, see
[1], [2]) algorithm is to accelerate the linear version of algorithm (2),

xi − x∗ = A(xi−1 − x∗) + r(xi) = Ai(x0 − x∗) + r(xi) (3)

where x∗ is the fixed point of g, r(x) = O(‖x − x∗‖2) and A =
g′(x∗), the Jacobian of g at x∗. If we drop r(xi) and average the N
first equations (3) with coefficients ci (with unitary sum), we obtain∑N

i=0 cixi − x
∗ =

∑N
i=0 ciA

i(x0 − x∗) = p(A)(x0 − x∗) (4)

where p(A) is a matrix polynomial where p(1) = 1. The goal of
MPE is to minimize this polynomial using only the sequence {xi}
(meaning we cannot acces to A). However, the differences follow

xi+1−xi = (xi+1−x∗)−(xi−x∗) = (A−I)(xi−x∗), i = 1 . . . N.

Their combination with coefficient ci thus becomes∑N
i=0 ci(xi+1 − xi) = (A− I)p(A)(x0 − x∗)

The previous equation means that if the combination of differences
is small, so the polynomial is also small, so the weighted mean (4)
is close to the solution x∗. Let U = [..., xi+1 − xi, ...] the matrix of
differences. The MPE algorithm solves

c∗ = argminc ‖Uc‖2 = (UTU)−11N/(1
T
N (UTU)−11N ), (5)

where 1N is a vector of N ones, then returns xextr =
∑N

i=1 c
∗
i xi.

A important advantage of this method is its complexity: if n� N
(with n the dimension of the space), the complexity is linear in the
dimension. Even better, if the vectors are p-sparse, then the complexity
thus becomes O(p).

III. REGULARIZED MINIMAL POLYNOMIAL EXTRAPOLATION

The main problem of MPE is the inversion of matrix UTU of
size N ×N . Even if its size is small (in numerical experiments, N
is typically 5), its condition number is extremely large. Thus, when
some perturbations is added in the system the impact on the solution
c∗ is huge. The perturbations come, for example, from the remainder
in (3). This algorithm has been shown to be extremely unstable in
practice (see Figure 2). The Regularized MPE (RMPE) algorithm thus
solves a similar problem, with Tikhonov regularization

c∗ = argminc ‖Uc‖22 + λ‖c‖22

whose solution is also computed via a linear system, similar to (5).
This regularization term is able to control the impact of perturbations,
leading to a significant improvement in terms of performances. The
regularization also allows to derive an upper bound on the perfor-
mances of the method (see [3]), which appears to be asymptotically
optimal (if applied with gradient method on strongly, smooth functions
with Lipschitz-continuous Hessian).

IV. NUMERICAL PERFORMANCES AND CONCLUSION

In [3], the RMPE-N method (applied to gradient method) is
compared to the Nesterov’s accelerated gradient method [4]. The
RMPE-N is a variant of RMPE, which restart the extrapolation each
N steps (more details in [3]) and find λ using inexact line search. In
Figures 1 and 3 is reported the optimization of the logistic regression,
on Madelon and Sido0 datasets. We see that without any information
on the strong-convexity constant of the function (unlike Nesterov’s
accelerated gradient), the RMPE-N algorithm outperforms the other
methods used. Moreover, even without any theoretical guarantee,
RMPE-N performs well also on non-smooth functions, for example
on MAXCUT problem (see Figure 4). In all of these examples, we
see that the post-processing step works well, and the impact of the
complexity of computing the non-linear average on the conputation
time is completely marginal.
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Fig. 1. Solving logistic regression on Madelon dataset (500 features, 4400
data points, condition number = 1.5 · 105). Here, RMPE is used on gradient
method.
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Fig. 2. Application of MPE (non-regularized acceleration) for solving
logistic regression on Madelon dataset. We see that MPE looks unstable
at the beginning, then completely diverge after 500 iterations.

0 20 40 60 80 100
10-10

10-5

100

f
(w

k
)
−

f
(w

∗

)

CPU Time (sec.)

Gradient

Nesterov

Nest. + backtrack

RMPE 5

RMPE 5 + LS

Fig. 3. Solving Logistic regression on sido0 dataset (4932 features, 12678
data points, condition number = 1.5 · 105). Here, RMPE is used on gradient
method.
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Fig. 4. Solving MAXCUT (dual) problem using algorithms for non-smooth
functions. Even if the improvement of RMPE is not as impressive as in Figures
1 and 3, the speed of convergence becomes more or less twice faster. Here,
RMPE is used on sub-gradient and dual averaging methods.
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