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†CNRS, DMA, École Normale Supérieure, Paris, Email: Gabriel.Peyre@ens.fr

Abstract—Primal–Dual (PD) splitting method has become very popular
for solving sparse recovery problems and beyond (see for instance the
review [9]). The goal of this work is to understand the local convergence
behaviour of PD which has been observed in practice to exhibit local
linear rate of convergence. In this paper, we show that when the involved
non-smooth functions are partly smooth, the PD algorithm identifies the
associated active manifolds in finite time, and then locally converges
linearly with a rate determined by the properties of the primal and dual
active manifolds. The result is illustrated by several concrete examples
and supported by numerical experiments.

I. INTRODUCTION

Consider the following composite optimization problem,
min
x∈Rn

R(x) + F (x) + (J ∨+ G)(Lx), (1)

where R, J are proper, lower semi-continuous (lsc) and convex on Rn
and Rm, F is convex differentiable with ∇F being 1/βF -Lipschitz
continuous and G is βG -strongly convex, L : Rn → Rm is a linear
operator and (J ∨+ G)(·) def

= infv∈Rm J(·) + G(· − v) denotes the
infimal convolution of J and G. In this work, we focus on the saddle
point formulation of problem (1) which reads

min
x∈Rn

max
v∈Rm

R(x) + F (x) + 〈Lx, v〉 −
(
J∗(v) +G∗(v)

)
, (2)

and assume that strong duality holds (i.e. the duality gap is 0 [11]).
Denote X and V the sets of primal and dual solutions, and assume
that both X and V are non-empty. We also assume that both R, J∗

are simple, i.e. proxγR, proxγJ∗ , γ > 0 are easy to compute,
where proxγR denotes the proximity operator which is defined by
proxγR(·) = argminx∈Rn

1
2
||x− ·||2 + γR(x), γ > 0.

In the literature, an efficient and provably convergent algorithm for
solving (2) is the following Primal–Dual splitting method proposed
in [8], [4] which covers [1], [5] as special cases,xk+1 = proxτR(xk − τL∗vk − τ∇F (xk)),

x̄k+1 = xk+1 + θ(xk+1 − xk),

vk+1 = proxσJ∗(vk + σLx̄k+1 − σ∇G∗(vk)),

(3)

where τ, σ > 0 are the step-size, and θ ∈ [0, 1]. When θ = 1, the
convergence of the sequences generated by (3) is guaranteed if τ, σ
are chosen such that 2 min{βF , βG}min{ 1

σ
, 1
τ
}(1−

√
στ ||L||2) > 1.

Moreover, the convergence rate of the sequences is o(1/
√
k) which

is sub-linear, see [10] and reference therein for the global sub-linear
rate of convergence.

II. PARTLY SMOOTH FUNCTIONS AND FINITE IDENTIFICATION

Beside being proper convex lsc, our central assumption for R, J∗

is that they are partly smooth, a concept originally defined in [2]. Here
we specialize it to the case of proper convex lsc functions. Denote
par(C) the subspace parallel to the non-empty convex set C ⊂ Rn.

Definition II.1. Let R : Rn →]−∞,+∞] be proper convex and lsc,
and x ∈ Rn such that ∂R(x) 6= ∅. R is partly smooth at x relative
to a set M containing x if

(Smoothness) M is a C2-manifold, R|M is C2 around x.
(Sharpness) The tangent space TM(x) = Tx

def
= par(∂R(x))⊥.

(Continuity) The ∂R is continuous at x relative to M.

We denote PSFx(M) the set of partly smooth functions at x relative
toM. Partly smooth functions are ubiquitous in imaging and machine
learning, and popular examples include `1, `1,2, `∞-norms, TV semi-
norm and nuclear norm. See the descriptions below, and also [6], [3],
[7]. Given x ∈ Rn, let s = sign(x) and ∇ be the gradient operator,

`1 :Mx = {u ∈ Rn : supp(u) ⊆ supp(x)},
`1,2 :Mx = {u ∈ Rn : Iu ⊆ Ix}, Ix =

{
i : xbi 6= 0

}
,

`∞ :Mx =
{
u : uI = rsI , r ∈ R

}
, I = {i : |xi| = ||x||∞},

TV :Mx =
{
u ∈ Rn : supp(∇u) ⊆ I

}
, I = supp(∇x),

Nuclear :Mx = {u ∈ Rn1×n2 : rank(u) = rank(x) = r},
A desirable property of partly smooth functions is that the underly-

ing low-dimensional smooth manifold “attracts” the iterates generated
by first-order algorithms, as we show below for the PD algorithm.

Theorem II.2 (Finite activity identification). Suppose that the PD
algorithm (3) is run such that (xk, vk)→ (x?, x?) ∈ X ×V . Assume
moreover that R ∈ PSFx?(MR

x?), J ∈ PSFv?(MJ∗
v? ), and

−L∗v? −∇F (x?) ∈ ri
(
∂R(x?)

)
,

Lx? −∇G∗(v?) ∈ ri
(
∂J∗(v?)

)
.

(4)

Then, the PD algorithm has the finite activity identification property,
i.e. for all k sufficiently large, (xk, vk) ∈MR

x? ×MJ∗
v? .

Condition (4) can be viewed as a geometric generalization of the
strict complementarity of non-linear programming.

III. LOCAL CONVERGENCE OF PD
We now turn to local linear convergence properties of PD. To de-

liver the result, we need to define an augmented variable zk =
(xk
vk

)
.

Theorem III.1. Suppose that the PD algorithm (3) is run under the
assumptions of Theorem II.2, then there exists a matrix M such that
for all k large enough, the iteration (3) can be written as

zk+1 − z? = M(zk − z?) + o(||zk − z?||), (5)

where M is convergent (i.e. limk→∞Mk exists). Then,
1) given any ρ ∈]ρ(M −M∞), 1[, there exists a K large

enough such that for all k ≥ K,

||(Id−M∞)(zk − z?)|| = O(ρk−K). (6)
2) If moreover, R, J∗ are locally polyhedral around (x?, v?),

there exists a K large enough such that for all k ≥ K,

||zk − z?|| = O(ρk−K), ρ ∈ [ρ(M −M∞), 1[. (7)
The result (7) holds also for ||xk − x?|| and ||vk − v?||.

If F,G∗ vanish and R, J∗ are locally polyhedral around (x?, v?),
then the convergence rate can be given in terms of the principal
angle between the tangent spaces TRx? and T J

∗
v? [7].

IV. NUMERICAL EXPERIMENTS

To demonstrate the above result, we consider several problem
instances, including compressed sensing, denoising and inpainting,
which are well fitted for PD algorithm. The observed and predicted
convergence profiles of PD are shown in Figure 1.



100 200 300 400 500 600 700 800

k

10-10

10-6

10-2

102

kz
k
!

z
?
k

Practical observation
Theoretical estimation

(a) CS `1-norm

2000 4000 6000 8000 10000 12000 14000

k

10-10

10-6

10-2

102

kz
k
!

z
?
k

Practical observation
Theoretical estimation

(b) CS `∞-norm

50 100 150 200 250 300 350 400 450

k

10-10

10-6

10-2

102

kz
k
!

z
?
k

Practical observation
Theoretical estimation

(c) CS `1,2-norm

100 200 300 400 500 600 700

k

10-10

10-6

10-2

102

kz
k
!

z
?
k

Practical observation
Theoretical estimation

(d) CS Nuclear norm
k

50 100 150 200

kz
k
!

z
?
k

10-10

10-6

10-2

102

Practical observation
Theoretical estimation

(e) Uniform noise removal
k

1000 2000 3000 4000 5000 6000

kz
k
!

z
?
k

10-10

10-6

10-2

102

Practical observation
Theoretical estimation

(f) Outliers removal

Fig. 1. Observed (solid) and predicted (dashed) convergence profiles of PD (3) in terms of ||zk − z?||. It can be observed that the rate estimates we obtain
are very sharp, especially for the case where all the involved functions are polyhedral (e.g. figure (a), (b) , (e) and (f)). For the first 4 subfigures, we solve
a problem of the form minx∈Rn J(x) + ι{0}(Lx − b) whose saddle point problem reads minx∈Rn maxv∈Rm J(x) + 〈Lx − b, v〉 − ι∗{0}(v), where
L is either drawn randomly from the standard Gaussian ensemble (CS) or random binary (inpainting), and ι{0}(·) is the indicator function. (a) CS with
R = || · ||1, L ∈ R48×128. (b) CS with R = || · ||∞, L ∈ R63×64. (c) CS with R = || · ||1,2, L ∈ R48×128. (d) Nuclear norm, L ∈ R500×1024. For
the two TV denoising examples, we consider the problem minx∈Rn ||x||TV subject to ||b − x||p ≤ τ whose corresponding saddle point problem reads
minx∈Rn maxv∈Rm ι||b−·||p≤τ + 〈DDIFx, v〉− ι||·||∞≤1(v). (e) Uniform noise removal with p =∞. (f) Outliers removal with p = 1. The starting points
of the dashed lines are the iteration at which the active manifolds are identified.
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Normandie Université, GREYC CNRS UMR 6072, 2016.
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