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I. INTRODUCTION

The main goal of many compressed sensing (CS) algorithms is to
recover an unknown high-dimensional target signal x ∈ Rn from
its noisy undersampled linear measurements y = Ax + z, where
A ∈ Rm×n and z ∈ Rm denote the measurement matrix and
the measurement noise, respectively. Despite the improvement that
CS algorithms offer compared to conventional sensing methods [1]–
[3], their main shortcoming is the discrepancy between the (true)
complex structures present in many signals, such as natural images
and videos, versus the relatively simple structures that are employed
by classical algorithms, such as total variation minimization [4]–[8].
Bridging this gap can potentially lead to considerable gain in the
performance of recovery algorithms in terms of their required number
of measurements or reconstruction quality.

In this paper, we present a novel, complimentary approach to
design generic recovery algorithms that exploit complex structures.
Consider a class of signals Q ⊂ Rn, e.g. the class of natural images
or videos, and suppose that there exists an efficient compression code
for signals in Q, e.g. JPEG2000 or MPEG4, respectively. Existence
of such a compression code for a set Q suggests that there exists
a shared structure between signals in this set. Such structures are
typically much more complex than those exploited by CS algorithms.
Therefore, the required number of measurements of a CS recovery
algorithm that instead of simple structures employs such complex
ones is reduced by a great factor.

This leads us to the following question: Can we efficiently use
an existing compression code to build an efficient CS recovery
algorithm? In other words, can we build an efficient CS recovery al-
gorithm that takes advantage of signals’ complex structures via using
efficient compression codes? In response to this question, we propose
a novel algorithm, namely, compression-based gradient descent (C-
GD), which is an iterative algorithm that employs a compression
code to solve a CS problem. Our empirical and theoretical results
demonstrate the effectiveness of C-GD algorithm. C-GD can be
considered as an efficient method to approximate the solution of the
highly non-convex compressible signal pursuit algorithm proposed in
[9].

II. COMPRESSION-BASED GRADIENT DESCENT

Consider a compact set Q ⊂ Rn and a rate-r lossy compression
code for set Q, described by the encoding and decoding mapping
pair (fr, gr). Given measurements y = Ax + z, where x ∈ Q and
A ∈ Rm×n, C-GD, iteratively, employs the following update rule:

xk+1 ← gr
(
fr
(
xk + αk A

T (y −Axk)
))

, (1)

where αk > 0 is a step-size that ensures the convergence of the
algorithm. The intuition of the algorithm is simple; by computing
xk+αk A

T (y−Axk), C-GD moves its estimate toward the subspace
{x ∈ Rn : y = Ax}. Then, performing gr(fr(·)) maps the
obtained estimate on a discretized version (codebook) of Q, which
contains the set of compressible signals. We refer to this algorithm as
compression-based gradient descent (C-GD), and prove that, given

enough number of measurements, it always converges, even in the
presence of measurement noise. For example, Theorem 1 shows that,
with high probability, C-GD converges to a good estimate of x , if m
is a constant factor times nr, where r denotes the per-symbol rate of
the compression code. After Theorem 1 we give a concrete example
that clarifies the required number of measurements of C-GD.

Theorem 1. Let δ denote the supremum distortion of code (fr, gr)
over set Q. Let A ∈ Rm×n be a random Gaussian measurement ma-
trix with i.i.d N (0, σ2

a/n) entries, and z ∈ Rm be an i.i.d. N (0, σ2
z)

Gaussian noise vector. Let α = 1
mσ2

a
and x̃ = gr(fr(x)). Then,

given ε > 0 and m ≥ 80nr(1 + ε), with a probability larger than
1− 2−2εnr+1, for k = 0, 1, 2, . . .,

1√
n
‖xk+1 − x̃‖2 ≤

0.9√
n
‖xk − x̃‖2 + 2

(
2 +

√
n

m

)2
δ√
n

+
σz
σa

√
8(1 + ε)nr

m
.

Note that limk→∞
1√
n
‖xk+1 − x̃‖2 ≤ 20

(
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√
n
m

)2 δ√
n

+

10 σz
σa

√
8(1+ε)nr

m
. If we assume that the distortion of the code is

low, then the only remaining error will be due to the noise. However,
small values of δ often correspond to large values of r. Hence, the
smaller the first error term is, the larger the second error term will
be.

To connect this result with more classical results in CS, we consider
a very simple example. LetQ ⊂ Rn denote the set of k-sparse signals
that lie inside the Euclidean unit ball. A simple compression code
for x ∈ Q consists of describing i) the sparsity pattern of x using
≈ log2

(
n
k

)
bits, and ii) the quantized value of the non-zero elements

of x. To achieve supremum distortion δ, this code requires a rate r,
where

r ≤ 1

n
log2

(
n

k

)
+
k

n
log2(

√
k

δ
) + c

k

n
,

Let δ = 1
n

. Then, from Theorem 1, by using this compression code
inside C-GD algorithm, if the number of measurements satisfies m >
80k logn, with high probability, at each step of C-GD,

1√
n
‖xk+1 − x̃‖2 ≤
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(
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m
.

Note that both the number of measurements and the sensitivity to the
Gaussian noise can be compared with the similar results in [10] and
are nearly optimal.

III. NUMERICAL RESULTS

In our numerical results, we study CS of test images for both
i.i.d. Gaussian and random partial Fourier measurement matrices. We
consider two different noise levels, SNR = 10dB and 30dB, and two
different sampling rates. Tables I and II report the peak signal-to-noise
ratios (PSNR) of recoveries based on i) state-of the art compressive
imaging algorithms and ii) C-GD employing JPEG2000.



TABLE I: The PSNR performance of C-GD algorithm that employs JPEG2000 compression code is compared with the state-of-the-art
NLR-CS algorithm [11]. 512× 512 test images are sampled by a random partial-DCT measurement matrix and distorted by Gaussian noise
with various SNR values.

House Barbara Shore
Method Sampling ratio SNR=10 SNR=30 SNR=10 SNR=30 SNR=10 SNR=30

JP2K-CG
10% 17.33 24.40 16.53 18.65 16.40 24.03
30% 19.56 35.38 18.82 26.19 19.18 35.39

NLR
10% 11.66 24.14 12.10 19.83 10.83 22.20
30% 12.6 26.84 13.32 23.05 11.76 24.98

TABLE II: The PSNR performance of C-GD algorithm that employs JPEG2000 compression code is compared with the state-of-the-art
recovery algorithm BM3D-AMP [12] for Gaussian sensing matrices. 128×128 test images are sampled by a random Gaussian measurement
matrix and distorted by Gaussian measurement noise with various SNR values. While BM3D-AMP often outperforms JPEG2000-GD, (i) as
is clear from the table, when the noise is higher, the difference is much lower and in some cases (Shore image) JPEG2000-GD outperforms
BM3D-AMP, (ii) BM3D-AMP does not work on partial-Fourier matrices that are used in many applications, (iii) by using better compression
algorithms one can improve the performance of C-GD.

House Barbara Shore
Method Sampling ratio SNR=10 SNR=30 SNR=10 SNR=30 SNR=10 SNR=30

JP2K-CG
30% 21.86 26.52 21.42 24.23 22.80 24.15
50% 24.82 28.67 22.78 27.13 25.64 29.64

BM3D-AMP
30% 24.12 35.40 22.05 30.36 23.85 34.01
50% 25.72 37.07 23.38 33.06 24.81 36.28
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