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I. INTRODUCTION

Sparse methods have gained popularity as an effective way to
alleviate the curse of dimensionality in neuroimaging applications
such as Alzheimer’s disease (AD) and Mild Cognitive Impairment
(MCI) classification. By imposing sparsity inducing regularization
terms these methods are able to perform feature selection jointly with
classification.

The simplest of these methods is the Lasso which uses L1

norm regularization to induce sparsity. It has been used for AD
classification in [1] and [2]. It is effective but the selected features
may be sparsely distributed throughout the whole brain and unstable.
To overcome this, one possibility is to consider groups of features.
This is the approach of Group Lasso that uses L2,1 norm to promote
group sparsity. It was used for AD in [3]. It can also be generalized to
allow for overlapping groups, including tree structured groups where
a hierarchy of relationship between features can be defined. This
approach has been proposed in [4] for AD and MCI classification
using a pyramid tree hierarchy.

In this paper we propose an alternative tree structure, more
consistent with disease related atrophy, where neighboring features
are grouped according to anatomically defined regions of the brain
and in a hierarchy that joins regions in the left and right hemispheres
of the brain to take into account bilateral symmetry which typically
occurs in AD.

We apply these methods to MRI images from ADNI [5] and
evaluate their classification performance and the stability of the
obtained feature weights when several runs are performed.

II. METHODS

We use the tree structured group Lasso which is based on the
group-Lasso penalty, and defines each node in the tree as a group and
leaf nodes as individual features (voxels). Our goal is to calculate
a parameter vector of weights associated with each feature which
reflect the importance of a given cerebral voxel for AD and MCI
classification.

A set of m image samples are used to train the model, {ai, bi}mi=1

where ai ∈ <n represents the n-dimensional features and bi ∈
{−1, 1} the class of each sample.

The parameter vector x ∈ <n is found by solving the optimization
problem in Eq. (1). The first term is the Logistic Regression loss
function, the second term is the regularization term (penalty) and
λ > 0 is the regularization parameter that regulates the trade-off
between the two terms.
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In the penalty term, d is the number of tree levels, ni is the number
of nodes for a given level, Gi

j is the group of voxels in node j of
the ith level of the tree and wi

j is the weight assigned to that group.

Two types of tree structured Group Lasso were tested.
• Pyramid Tree - This tree adopts the pyramid structure of [4]

which is based on the assumption that neighbour voxels are
spatially correlated but does not explore brain anatomy. It has
3 levels; the first level divides the brain into 43 cubic regions,
the second level divides each region in the previous level into
another 43 cubes and the third level is formed by single voxel
leaves.

• Atlas Tree - This tree groups voxels according to the brain
regions in the Harvard-Oxford (HO) atlas and exploits the fact
that AD is typically bilateral. It has 3 levels; the first one
groups atlas regions with their counterpart in the opposing brain
hemisphere, when applicable; the second level contains the 21
cortical regions and 48 subcortical regions in the HO atlas
and the third level contains all the leaf nodes corresponding
to individual brain voxels. This tree is represented in Fig. 1.

For classification we use the Logistic Regression Classifier, which
computes the posterior probability of class y ∈ {−1, 1} and assigns
each test sample to the more likely class.

III. EXPERIMENTAL RESULTS

We used 1.5T MRI data from ADNI [5] (details in Table I),
which we warped into the MNI152 space, the same space as the
HO atlas. We tested both Tree methods and Lasso in two problems,
AD vs. Control Normals (CN) and MCI vs. CN. The value of the
regularization parameter was estimated with 5-fold nested cross-
validation. The values for λ were specified as a ratio α × λmax

with α ∈ {10−3, 10−2, ...100}, where λmax denotes the maximum
value of λ above which the solution to Eq. (1) is zero. All methods
were implemented with the SLEP toolbox [6].

Group CN (75) MCI (135) AD (58)
Age(mean±sd) 75.9±4.9 75.1±6.6 76.0±6.6
Sex (M/F) 49/26 88/47 34/24
MMSE (mean±sd) 29.1±1.0 27.2±1.6 23.5±1.9
CDR (mean±sd) 0±0 0.5±0.0 0.8 ±0.2

TABLE I
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF EACH GROUP. THE

NUMBER OF IMAGES IS SHOWN IN PARENTHESES.

Fig. 2 displays the ROC curves obtained with the three methods
for both classification tasks. These curves show the possible trade-off
between sensitivity and specificity. The same figure presents the Area
Under the ROC Curve (AUC) for each curve. As can be seen, in both
cases, the performance of the three methods is close, and worse for
MCI vs CN than AD vs CN, as expected. For MCI vs CN there is
some improvement of the both Tree methods over Lasso and of the
Atlas Tree over the Pyramid Tree. For AD vs CN only Atlas Tree
was able to outperform Lasso, this is probably due to the rigidity of
the Pyramid tree groups.



Fig. 1. Tree based on the cortical and subcortical regions of the Harvard-Oxford atlas.

We also analyzed the stability of feature weights across the
different folds. Our stability metric is based on Pearsons correlation
coefficient to measure the similarity between two weight images. We
evaluate the pairwise similarities over all the possible pairs and then
compute the average. Fig. 3 shows the stability obtained for AD vs
CN and MCI vs CN classification. In both cases the Tree methods
obtained dramatic improvements in stability when compared with
Lasso. The Tree Atlas method consistently obtained the best results
while Lasso obtained the worse.

Fig. 2. Receiver operating characteristic curve (ROC).

Fig. 3. Weight stability.

Regarding the regional distribution of the features selected by Tree
Atlas, i.e. those with weights different from zero, we verified that

most of the features are selected in the amygdala, the hippocampus
and the parahippocampal gyrus. This is in agreement with previous
studies [4]. We also confirmed that in these regions the weights are,
in general, symmetrically distributed.

IV. CONCLUSION

We applied sparse logistic regression to AD and MCI classification.
Two types of tree-structured sparse penalties were investigated and
were shown to outperform L1-regularization. The proposed method
using tree structured group sparsity based on the Harvard Oxford
atlas brain regions and on bilateral symmetry not only attained the
best classification performance but also generated more stable and
therefore more interpretable feature patterns.
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