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Abstract—We use a multidimensional signal representation that inte-
grates diffusion Magnetic Resonance Imaging (dMRI) and tractography
(brain connections) using sparse tensor decomposition. The representa-
tion encodes brain connections (fibers) into a very-large, but sparse,
core tensor and allows to predict dMRI measurements based on a
dictionary of diffusion signals. We propose an algorithm to learn the
constituent parts of the model from a dataset. The algorithm assumes
a tractography model (support of core tensor) and iteratively minimizes
the Frobenius norm of the error as a function of the dictionary atoms,
the values of nonzero entries in the sparse core tensor and the fiber
weights. We use a nonparametric dictionary learning (DL) approach to
estimate signal atoms. Moreover, the algorithm is able to learn multiple
dictionaries associated to different brain locations (voxels) allowing for
mapping distinctive tissue types. We illustrate the algorithm through
results obtained on a large in-vivo high-resolution dataset.

I. EXTENDED ABSTRACT

Diffusion Magnetic Resonance Imaging (dMRI) allows to estimate
structural brain connections (fibers) in-vivo by measuring the diffu-
sion of water molecules within a volume (voxels v = 1, 2, 3, . . . , Nv)
at different magnetic field gradient directions (θ = θ1,θ2, . . . ,θNθ ).
Fibers describe the putative position and orientation of the neuronal
axons bundles traveling within the living human brain [1] (Fig. 1(a)).

Diffusion signals can be modeled as non-negative linear combi-
nations of the signals associated to overlapped fibers [2]. Several
parametric signal models have been used in the literature for fitting
dMRI signals, for example, under specific conditions (e.g. small b-
values), the water molecules diffusion process follows a Gaussian
distribution which leads to the Diffusion Tensor (DT) model [1].
However, under more general conditions (e.g. large b-values), this
simple model does no longer hold [3].

We propose a non-parametric learning algorithm to estimate fiber
response functions from a given dMRI dataset, which is based
on a recently proposed multidimensional signal representation that
encodes diffusion dMRI and tractography (brain connections) into
a sparse tensor decomposition [4]. Previous DL methods [5], [6]
focussed only on the dMRI signal within individual voxels. Instead,
we incorporate tractography data into the model. So whereas previ-
ous contributions learn typical diffusion patterns, including crossing
fibers, with the objective to reduce the number of measurements
and apply denoising, we learn atoms that correspond to single fibers
with different orientations. Our approach combines what is generally
referred to as microstructure (dMRI signals within individual vox-
els) and macrostructure (the anatomical properties described by the
tractography data).

Single-dictionary model: We propose the following sparse Tucker
model [7] for a full-brain diffusion signal (demeaned1) Y ∈ RNθ×Nv

1We model the signal after the mean diffusion is removed, i.e. Y(θ, v) =
S(θ, v)− 1

Nθ

∑
θi

S(θi, v), where S(θ, v) is the measured diffusion signal.

with Nθ gradient directions and Nv voxels (Fig. 1(b)):

Y ≈ Ŷ = Φ×1 D×3 wT , (1)

where Φ ∈ RNa×Nv×Nf is a sparse tensor whose non-zero entries,
Φ(a, v, f), indicate the orientation of fiber f in voxel v, which is
approximated by atom a, “×i” is the tensor-by-matrix product in
mode-i, D ∈ RNθ×Na is a dictionary of diffusion predictions whose
columns (atoms) correspond to fiber orientations, and w ∈ RNf is
a vector of nonnegative fibers weights.

Multi-dictionary model: In our experiments, the single-dictionary
model was not able to provide good approximations to the data in
all voxels so, here, we propose a multi-dictionary model as follows:

Y ≈ Ŷ = [Φ1 ×1 D1,Φ2 ×1 D2, . . . ,ΦN ×1 DN ][2]×3wT , (2)

where [A1,A2, . . . ,AN ][n] is the mode-n concatenation of tensors
Ai (i = 1, 2, . . . , N ). In other words, voxels are grouped into N
subsets, each one having a single-dictionary model, i.e. Yn ≈ Φn×1

Dn ×3 wT with Y = [Y1,Y2, . . . ,YN ].
The proposed learning algorithm: We fix the support of tensor

Φ using the output of any available tractography2 algorithm [8].
Our algorithm starts with the single dictionary model of eq. (1)

and iterates between two optimization steps:
• STEP 1: Given a vector w, find the dictionary D and the

nonzero values in tensor Φ that minimize the error ‖Y− Ŷ‖2F .
By defining B = Φ×3 wT ∈ RNa×Nf , the objective function
can be written as ‖Y − DB‖2F , thus the dictionary D can
be updated as in the codebook update stage of the K-SVD
algorithm [9] using nonnegative constraints on B. Then, the
values of nonzero entries in Φ are updated such that equation
B = Φ×3 wT holds.

• STEP 2: Given D and Φ, find the optimal nonnegative vector w
that minimizes the error ‖Y−Ŷ‖2F . By defining M = Φ×1D,
the objective function can be written as ‖vec(Y)−MT

(3)w‖2F ,
where M(3) is the mode-3 unfolding matrix of tensor M. This
problem can be solved by applying a nonnegative least squares
(NNLS) algorithm, e.g. [10].

Once this two-steps iteration converges, we evaluate the obtained
errors in each voxel and split the tensor Φ = [Φ1,Φ2][2] such that
Φ1 (Φ2) contains the voxels with lowest (highest) errors. We set
the threshold as the median of the error distribution so the tensor
Φ is divided into two equal sized subtensors. Then, we repeat the
above described optimization steps but restricting the DL (STEP 1)
to each subset of voxels. We repeat this procedure until convergence
is achieved and a predefined maximum number of dictionaries is
reached (see Algorithm 1).

2Tractography methods typically identify potential fibers by looking at the
directions of maximal diffusivity voxel by voxel.



Results: Our algorithm was tested on a full-brain high-resolution
dataset (1.25mm, b = 2, 000s/mm2) from the Human Connectome
Project (HCP)[11]. We used fibers of twenty major human white-
matter tracts [12] obtained with the probabilistic tractography method
[8]. We fit the model to the diffusion data and analyzed the ob-
tained dictionaries by grouping atoms in subsets of similar diffusion
response functions (RFs) (Fig. 2(a))-left. It is highlighted that a
diverse set of RFs are obtained, ranging from low to high Fractional
Anisotropy (FA, [1]), as displayed in light-yellow (top) and dark-blue
(bottom), respectively. In Fig. 2(a)-right, the spatial distribution of
the obtained RFs are shown for the case of one important human
white-matter tract: the Corticospinal tract. In order to compare the
obtained atoms against theoretical DTI-based models, in Fig. 2(b),
three examples of DTI diffusion RFs are shown. Finally, in Fig. 2(c),
the RF obtained empirically based on voxels with no crossing fibers
using MRTRIX 0.2 software [8] is shown.
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Fig. 1. The Single-Dictionary Sparse Tucker Model for dMRI: (a) Illustration of
two white matter fibers (f1 and f2) and three voxels (v1, v2 and v3). The diffusion
signal at voxel v2 is a nonnegative linear combination of the signals associated to f1 and
f2. (b) The full-brain diffusion signal Y ∈ RNθ×Nv is decomposed as the product of
a very large, but sparse, core tensor Φ ∈ RNa×Nv×Nf , and factors D ∈ RNθ×Na

(mode-1, dictionary matrix) and wT ∈ R1×Nf (mode-3, vector of weights).
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Fig. 2. Experimental results: Dataset: a full-brain dataset having Nv = 224, 675
voxels, Nθ = 90 gradient directions and Nf = 58, 143 fibers (probabilistic
Tractography, Lmax = 10). We set the number of dictionaries Nmax = 4 and
the number of atoms (orientations) Na = 1, 981. The obtained relative error is
‖Y − Ŷ‖F /‖Y‖F = 0.093. (a)-left: Centroids of five clusters of obtained atoms.
In order to provide a high-resolution 3D visualization of atoms, we computed their
Spherical Harmonics representation using 25 coefficients (Lmax = 4, relative error =
0.10 ± 0.08). The diffusion direction is displayed as a blue line for each atom. (b)
Visualization of the theoretical Response Function (RF) of a fiber using the classical DT
model: s(θ) ∝ e−bθ

T diag[λ1,λ2,λ3]θ [1] for three different sets of parameter values
(λ1, λ2, λ3). (c) The RF estimated by using the MRTRIX software [8] which is based
on a detection of voxels with maximum Fractional Anisotropy (FA) as an indication of
collinear fiber voxels.
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