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Abstract—The very high spectral resolution of Hyperspectral Images
(HSIs) enables the identification of materials with subtle differences and
the extraction subpixel information. However, the increasing of spectral
resolution often implies an increasing in the noise linked with the image
formation process. This degradation mechanism limits the quality of
extracted information and its potential applications. Since HSIs represent
natural scenes and their spectral channels are highly correlated, they are
characterized by a high level of self-similarity and are well approximated
by low-rank representations. These characteristic underlies the state-
of-the-art in HSI denoising. However, in presence of rare pixels, the
denoising performance of those methods is not optimal and, in addition, it
may compromise the future detection of the rare pixels. To address these
hurdles, we propose a powerful HSI denoiser which implements hard
low-rank representation, promotes self-similarity in the representation
coefficients, and, by using a form of collaborative sparsity, preserves
rare pixels. The denoising and detection effectiveness of the proposed
robust HSI denoiser is illustrated using semi-real data.

I. INTRODUCTION

A. Background

HSIs have been widely used in countless applications, (e.g., earth
observation, environmental protection and natural disaster monitor-
ing), since they provide remarkably high spectral resolution (hun-
dreds or thousands of spectral channels), which enables material
identification with precision via spectroscopic analysis. However, the
measurement noise often precludes the widespread use of HSIs in
precise material identification (e.g., precision farming) applications.

Among the recent developments, low-rank and self-similarity based
image denoising holds the state-of-the-art in HSI denoising (e.g.,
NAILRMA [1] and FastHyDe [2]). However, the presence of rare
pixels, which are anomalies whose spectral-spatial characteristics are
different from majority of pixels (often called background), degrade
the denoising performance and may preclude the future detection of
the rare pixels, called anomaly detection problem [3].

This work aims at endowing our previous FastHyDe denoiser [2]
with the ability to preserve of rare pixels. We exploit three charac-
teristics of HSIs: a) they are well approximated by low dimensional
subspaces, b) their images of subspace representation coefficients,
herein termed eigen-images, are self-similar and thus suitable to be
denoised with non-local patch-based methods, such as the BM3D [4]
or LRCF [5], and c) anomalies are often spatially sparse.

B. Observation Model

Assume that the dataset contains a small number of spectral or
spatial outliers in unknown positions. The outliers are usually rare
pixels or pixel corruptions due to malfunction of the sensor. In a
way similar to robust PCA [6] and to the formulations [1], we adopt
the observation model

Y = X+ S+N, (1)
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which assumes that the observed data matrix Y ∈ Rnb×n (whose n
columns represent spectral vectors and nb rows spectral bands) can
be decomposed into three additive matrices of size Rnb×n; given Y,
our objective is the estimation of X and S, by exploiting the fact
that X is low-rank and self-similar and S is columnwise sparse. This
reasoning is similar to the robust principle component analysis [6].
The main difference with respect to (w.r.t) robust PCA is the way we
enforce low-rank w.r.t. X and the use of self-similarity. In addition,
we are interested in colummnwise sparsity of S, whereas in robust
PCA, the sparsity regards any element of S.

For hyperspectral images, an usual assumtions is that the columns
(spectral vectors) of matrix X live in a low-dimensional subspace that
may be estimated from the observed data Y with good approximation
[2, 7]. Thus, we write X = EZ [2], with E ∈ Rnb×p and p � nb,
and E holding an orthogonal basis for the signal subspace. Hence,
the observation model (1) may be written as

Y = EZ+ S+N. (2)

C. Denoising

Based on the observation model (2), we propose to estimate matrix
Z and the sparse matrix S representing outliers. Matrices {Z,S} may
then be inferred by solving the optimization

{Ẑ, Ŝ} ∈ argmin
Z,S

1

2
||EZ+S−Y||2F +λ1φ(Z)+λ2||ST ||2,1, (3)

where ||X||2F = trace(XXT ) is the Frobenius norm of X. The first
term on the right-hand side represents the data fidelity and accounts
for i.i.d. Gaussian noise. The second term is the first regularizer ex-
pressing prior information tailored to self-similar images [2, 4, 5, 8],
and the third term is the second regularizer, the mixed `2,1 norm of
ST given by ‖ST ‖2,1 =

∑n
i=1 ‖si‖2 (si denotes i-th column of S),

which promotes column-wise sparsity among the columns of S (see,
e.g. [9]) since anomalies are often spatially sparse. Finally, λ1 ≥ 0
and λ2 ≥ 0 are the regularization parameters, which set the relative
weight of the respective regularizers. Assuming that φ is a convex
function, then the optimization (3) is a convex problem.

We solve the optimization (3) with CSALSA algorithm [10]. Here
we use a trick of plug-and-play approach in solving the subproblem
w.r.t. Ẑ [11]. By assuming that φ is decoupled w.r.t. to the bands of
Z, and noting that E is orthogonal, then the plug-and-play step w.r.t.
Z amounts to apply an available denoiser, such as the BM3D [4] or
LRCF [5], to each band of Z. Since the denoisers are not proximity
operators, we don’t have converge guarantee for the implemented
variant of CSALSA. The convergence of the plug-and-play iterative
procedures is currently an active area of research [11]. In our case, we
have systematically observed converge provided that the augmented
Lagrangian parameter is set to µ ' 1.



D. Anomaly detection

We propose an anomaly detector derived from the estimate of
outlier matrix Ŝ in (3), i.e.,

ri = ‖ŝi‖2, i = 1, . . . , n (4)

where ŝi is the i-th column of outlier matrix Ŝ. If ri is larger than
a threshold, then the i-th pixel is detected as an anomalous pixel.

E. Experimental Results

A semi-real hyperspectral dataset (Fig. 1 (b)) is simulated by
adding i.i.d Gaussian noise and anomalous pixels to Pavia University
data1.

The denoising performance of proposed approach is compared
with NAILRMA [1] and FastHyDe [2]. For quantitative assessment,
the signal-to-noise (SNR) index and the structural similarity (SSIM)
index [2] of each band are calculated. The corresponding mean SNR
(MSNR) and mean SSIM (MSSIM) are reported in Table I. The
quality of reconstruction may also be inferred from Fig. 2. We can see
that proposed method is able to preserve anomaly pixels in denoised
results. Meanwhile, proposed anomaly detector is compared with
the state-of-the-art anomaly detectors, namely global RX [12], local
RX [12], OSP global RX [13], OSP local RX [13], NRS [14], and
BSJSBD [15] (Fig. 3).

TABLE I
QUANTITATIVE ASSESSMENT OF DIFFERENT DENOISING ALGORITHMS

APPLIED TO SEMI-SYNTHETIC DATASET.

Index Noisy Image NAILRMA FastHyDe Proposed
MSNR (dB) 20.31 33.25 38.13 38.58

MSSIM 0.8295 0.9949 0.9982 0.9983
Time (Seconds) - 480 25 213

MSNR (dB) 25.65 36.86 42.24 43.16
MSSIM 0.9303 0.9972 0.9991 0.9992

Time (Seconds) - 477 25 214

MSNR (dB) 30.84 40.64 47.58 49.34
MSSIM 0.9697 0.9987 0.9997 0.9997

Time (Seconds) - 488 25 218

MSNR (dB) 35.40 44.49 47.36 51.11
MSSIM 0.9910 0.9995 0.9998 0.9999

Time (Seconds) - 482 26 220

MSNR (dB) 40.19 47.81 49.56 54.27
MSSIM 0.9964 0.9997 0.9999 0.9999

Time (Seconds) - 475 26 222

Fig. 1. (a) Clean Pavia University scene (b) A subset of simulated noisy
image (20.31 dB) with 0.02 percentage of outliers (c) A subset of noisy
image (Band 61) (d) Groundtruth of outliers (e) A subset of denoised image
by proposed approach. (f) A subset of denoised image by proposed approach
(Band 61).

1Pavia scenes were provided by Prof. Paolo Gamba from the Telecom-
munications and Remote Sensing Laboratory, Pavia university (Italy)
and can be downloaded from http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral Remote Sensing Scenes.
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Fig. 2. Denoised spectral signatures of a normal pixel (left) and denoised
spectral signatures of a anomaly pixel (right) in simulated noisy data (20.31
dB) with 0.02 percentage of outliers. Note that the noise in anomaly pixel is
not removed completely since our main objective w.r.t. anomalies is to keep
them rather than to denoise them and our output result is Ẑ+ Ŝ.
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Fig. 3. False alarm rate as a function of the relative power of the rare pixels
that lies orthogonal complement of the signal subspace, denoted ad γ, for
SNR = 20.31dB. As γ decreases, the detection of the outliers becomes more
difficult. The false alarm rate is calculated as the ratio between the number
of background pixels wrongly categorized as targets and the total number of
detected pixels when all targets have been detected.

II. CONCLUSION

We have proposed a new denoising method with preservation of
rare pixels. As an extension of FastHyDe [2], the new method exploits
three characteristics of HSIs: a) low-rank, b) self-similarity, and c)
column-wise sparsity of outlier matrix. A comparison with the state-
of-the-art algorithms is conducted, leading to the conclusion that
proposed denoising approach yields better performance for additive
noise with preservation of rare pixels. The derived anomaly detector
shows superior detection performance.

REFERENCES
[1] W. He, H. Zhang, L. Zhang, and H. Shen, “Hyperspectral image denoising via noise-adjusted iterative low-rank

matrix approximation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8,
no. 6, pp. 3050–3061, 2015.

[2] L. Zhuang and J. Bioucas-Dias, “Fast hyperspectral image denoising based on low rank and sparse representations,”
in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2016), 2016.

[3] S. Matteoli, M. Diani, and G. Corsini, “A tutorial overview of anomaly detection in hyperspectral images,” IEEE
Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 5–28, Jul. 2010.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative
filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[5] M. Nejati, S. Samavi, S. Soroushmehr, and K. Najarian, “Low-rank regularized collaborative filtering for image
denoising,” in Image Processing (ICIP), 2015 IEEE International Conference on. IEEE, 2015, pp. 730–734.

[6] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal component analysis: Exact recovery of corrupted
low-rank matrices via convex optimization,” in Advances in neural information processing systems, 2009, pp. 2080–
2088.

[7] J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, “Hyperspectral unmixing
overview: Geometrical, statistical, and sparse regression-based approaches,” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354–379, Apr. 2012.

[8] A. Buades, B-Coll, and J-M Morel, “A non-local algorithm for image denoising,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE, 2005, vol. 2, pp. 60–65.

[9] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algorithms for simultaneous sparse approximation. Part I: Greedy
pursuit,” Signal Processing, vol. 86, no. 3, pp. 572–588, 2006.

[10] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “Fast image recovery using variable splitting and constrained
optimization,” IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2345–2356, 2010.

[11] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in
2013 IEEE Global Conference on Signal and Information Processing, Dec. 2013, pp. 945–948.

[12] I. S. Reed and X. Yu, “Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 10, pp. 1760–1770, Oct. 1990.

[13] L. Ma and J. Tian, “Anomaly detection for hyperspectral images based on improved rx algorithm,” in International
Symposium on Multispectral Image Processing and Pattern Recognition. International Society for Optics and Photonics,
2007, pp. 67870Q–67870Q.

[14] W. Li and Q. Du, “Collaborative representation for hyperspectral anomaly detection,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 53, no. 3, pp. 1463–1474, March 2015.

[15] J. Li, H. Zhang, L. Zhang, and L. Ma, “Hyperspectral anomaly detection by the use of background joint sparse
representation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 6,
pp. 2523–2533, Jun. 2015.


