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Abstract—Concentration inequalities play a key role in establishing
the suitability of random matrices for compressed sensing as well as
dimensionality reduction through random projections. In particular, the
Restricted Isometry Property (RIP) for random Gaussian matrices [1], [2]
and its relationship to Johnson-Lindenstrauss lemma can be established
directly from concentration inequality [3]. While concentration inequality
is usually established for general vectors, the distortion (in length) to
sparse vectors by random matrices is usually obtained by a combinatorial
argument together with union bounds. In this work, we study concen-
tration inequalities specific to sparse vectors when projected by random
matrices from compactly supported (e.g., uniform) distributions. From
this approach we naturally obtain sharper bounds compared to generic
concentration inequalities. These results suggest the superiority of such
distributions over the Gaussian distribution for random projection of
sparse vectors. Our experiments show this improvement in concentration
bound for a special case of sparse binary signals and the results are
further corroborated by a higher rate of recovery of general (non-binary)
sparse signals from random projections.

Given a matrix A ∈ Rm×N , where each element is i.i.d. and is
drawn the Normal distribution Ai,j ∼ N (0, 1

m
), any vector, x ∈ RN ,

with a unit length is projected to a vector, y ∈ Rm, by y = Ax will
satisfy the inequality:

Pr(‖y‖22 > 1 + δ) ≤ e−( δ2

2
− δ3

3
)m, (1)

for δ ∈ (0, 1). This shows that it is possible to represent any N -
D signal in m-D (m << N ) while preserving its energy (mostly)
with high probability. For recovering a class of signals (e.g., sparse
signals), usually we want δ to be as small as possible to establish
this random projection a bijection for that class. This is possible
when m or the number of measurements is sufficient with respect
to properties of A (e.g., RIP). While the majority of work on this
topic Gaussian and Bernoulli distributions are considered, we show
that the uniform distribution offers a tighter bound via concentration
inequality specifically for sparse vectors due to its compact support.

As described above, if each entry of A is i.i.d. and follows the
Gaussian distribution with 0-mean and a variance of 1

m
, then we

have:

yi ∼ N (0,
‖x‖22
m

), 0 ≤ i ≤ m

such that E[‖y‖2] = ‖x‖2. Without loss of generality, we assume
‖x‖2 = 1 for simplicity of discussion.

When the matrix A is drawn from a Uniform distribution with
mean 0 and variance 1

m
(i.e., Ai,j ∼ U(-

√
3
m
,
√

3
m
)) the mean and

variance of ‖y‖2 remain the same (due to linearity). However, the
distribution of yi is no longer a Gaussian, but is a compactly sup-
ported distribution (a piecewise polynomial). The key point, driving
our work, is that the support of this distribution depends on the `1
norm of x. As y can be viewed as a linear combination of columns
of A weighted by elements of x, yi, as a random variable, is a linear

combination of random variables Ai,1,Ai,2, · · · ,Ai,N weighted by
the elements of x. Since entries of A are drawn independently
the distribution of yi is the convolution of its constituent random
variables. With some abuse of notation (for brevity), one can show
that:

p(yi) = p(x1Ai,1) ∗ p(x2Ai,2) ∗ · · · ∗ p(xNAi,N ), (2)

where ∗ is convolution operator. Since p(xiAi,j) is a (scaled)
box function with support [-xi

√
3
m
, xi

√
3
m
], p(yi) is a univariate

(centered) box spline [4] described by a vector of directions which
is precisely (

√
3/m)xT. The distribution of yi is the box spline

M
(
√

3/m)xT(y) whose support is limited to −
√

3/m‖x‖1 ≤ y ≤√
3/m‖x‖1.
When x is sparse, the support of the distribution is limited by its

sparsity and hence, one can obtain tighter bounds for concentration
inequality. When the elements in x are binary (i.e., 0 and 1/

√
k for a

k-sparse signal), this box spline simplifies to a uniform B-spline [5].
This distribution, in the statistics literature is also known as Irwin-
Hall distribution. While we derive the concentration inequality (using
the Chernoff bound) for the entire class of box splines for generic
k-sparse signals, we here briefly discuss the simple case of uniform
B-splines that apply to binary k-sparse signals.

Figure 1 shows the of the distribution of ‖y‖2 for a k-sparse binary
signal (with k = 4) with the uniform (solid lines) and Gaussian (dash
lines) distributions with different δ and m. This experiment shows
that for large m, both distributions converge to 0 exponentially (as
expected); however, with the uniform distribution has a faster decay
as its decay depends on the sparsity of the underlying signal.

Another experiment in 2 shows the comparison of the recovery
rate of general sparse signals from different random measurements
that are drawn form uniform distribution and Gaussian distribution.
In this experiment, the signal dimension N is 200. We vary k from 1
to 70 and measure times m from 40 to 90, and use FISTA algorithm.
For each parameter setting, we repeat 1000 times. Its obvious to
notice that by using the sensing matrix that is drawn from Uniform
distribution has a little higher recovery rate than from Gaussian
distribution. Also, this improvement is more noticeable when m is
not too big (e.g., 40 ≤ m ≤ 70), which is consistent with our result
from Figure 1.

Although the experiment shows a little improvement on recovery
rate than Gaussian sensing matrix, due to the difficulty of deducing
the close form bound for Uniform distribution on Concentration
Inequality, in the future work, we will pay attention on solving this
problem in another norm space and research the RIP for Uniform
random matrices. Also, we will design new algorithms which can
benefit from Uniform distributed random matrices.
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Fig. 1. the solid lines show Pr(‖y‖22 > 1 + δ) when k = 4, δ changes from 0.1 to 0.5 and A follows the Uniform distribution with mean
0, variance 1

m
, the dash lines show Pr(‖y‖22 > 1 + δ) with any k and A follows the Gaussian distribution with mean 0, variance 1

m
.
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Fig. 2. shows the differnece of recover rate between Uniform distributed and Gaussian distributed sensing matrices.


