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Abstract—This paper presents an improved version of diffusion least
mean p-power (LMP) algorithm for distributed estimation of a sparse
parameter vector. We replace the sum of mean square errors with a
weighted sum of LMP for global and local cost functions of a network of
sensors. The weight coefficients are adaptive and are updated by a simple
steepest-descent recursion to minimize the global and local cost functions
of the adaptive algorithm. Simulation results show the advantages of the
proposed weighted diffusion LMP over the diffusion LMP algorithm
specially in the non-uniform noise environments in a sensor network.

I. INTRODUCTION

Distributed estimation is widely used in wireless sensor networks
to estimate a parameter vector distributively and cooperatively [1].
Among incremental [1], consensus [1] and diffusion [1], [2]–[4]
strategies for distributed estimation, in this paper, we focus on
diffusion-based algorithms for the estimation of sparse parameter
vectors. A diffusion least mean square (LMS) algorithm has been
proposed in [2] and [3]. Moreover, a diffusion least mean p-power
(LMP) has been suggested in [5] for distributed estimation in alpha-
stable noise environments. Also, a diffusion LMP algorithm with
adaptive variable power has been proposed in [6].

In this paper, the global and local cost functions of the diffusion
LMP algorithm [5] are defined as the weighted LMP of all the sensor
nodes. This is inspired by the non-uniform noise scenarios, where
some nodes operate under better noise conditions. It is better to assign
more weights to these nodes instead of using uniform distribution of
weightings among all nodes. Unlike the diffusion LMP algorithm [5]
with constant combination coefficients, for the local cost function, we
consider a time varying combination coefficients or a time-varying
weight. The weights in the global and local cost functions are updated
based on a steepest-descent recursion to minimize the global and local
cost functions of the adaptive algorithm.

II. PROBLEM FORMULATION

Consider a sensor network of N nodes distributed over a region.
Each sensor at time instant n takes a scalar measurement dk,n, which
is a linear measurement of a common sparse vector ωo. The model
is dk,n = ωT

o uk,n + vk,n, where k is the sensor number, uk,n is
the regression column vector, vk,n denotes the measurement noise
and T denotes the transposition. We aim to estimate the common
sparse parameter vector ωo based on linear measurements dk,n and
knowing the regression vectors uk,n. In distributed estimation, we
aim to cooperatively estimate the sparse parameter vector ωo via
in-network processing.

III. THE PROPOSED SPARSE WEIGHTED DIFFUSION LMP
ALGORITHM

For centralized global estimation of the diffusion LMP algorithm,
the sparse parameter vector ωo is estimated by minimizing the global
cost function [5] Jglob

LMP(ω) =
∑N

k=1 E{|dk,n−ωT uk,n|p}+βf(ω),
where E{.} is the expectation operator, and f(ω) represents a real-
valued convex regularization function weighted by the parameter β >
0, enforcing sparsity of the solution. Inspired by non-uniform noise
conditions and the idea of combination of adaptive filters [7], for
weighted diffusion LMP, we propose to use the global cost function
Jglob
WLMP(ω) =

∑N
k=1 αk(n)E{|dk,n − ωT uk,n|p} + βf(ω), where

αk(n) is the adaptive weights for k’th sensor at time instant n with
the constraint

∑N
k=1 αk(n) = 1. For the centralized estimation of the

unknown sparse parameter vector ω, the steepest-descent recursion is
ωn = ωn−1+

∑N
k=1 µk

(
αk(n)|ek,n|p−2ek,nuk,n − βζ(ω)

)
, where

ζ(ω) = ∂f(ω)
∂ω

and ek,n = dk,n − ωT
k,nuk,n is the error signal.

To update the weight coefficients αk(n), similar to [7], we assume
that αk(n) = eak(n)∑N

j=1 e
aj(n) . We update the coefficients ak(n) by

a steepest-descent recursion to minimize Jglob
WLMP(ω), which gives

ak(n+ 1) = ak(n)− µaαk(n)(|ek,n|p −
∑N

j=1 αj(n)|ej,n|p). The
local cost function at k’th sensor is also defined as J loc

k (ω) =∑
l∈Nk

clk(n)E{|dl,n − ωT ul,n|p} + β
N
f(ω), where clk is the

combination weight from sensor l to sensor k with the constraint∑N
l=1 clk(n) = 1. Similarly, we can assume clk(n) =

ealk(n)∑N
j=1 e

ajk(n) .

The overall algorithm is a three step algorithm. At the first step,
intermediate estimates at each node is calculated by [5], φk,n−1 =∑

l∈Nk
a1,lk(n)ωl,n−1,where the coefficients {a1,lk} determine

which nodes should share their intermediate estimates {ωl,n−1} with
node k [5]. At the second step, the nodes update their estimates by
[5], ψk,n = φk,n−1 + µkαk(n)

∑
l∈Nk

clk(n)|el,n|p−2el,nul,n −
µk

β
N
ζ(φ)|φ=φk,n−1

. Finally, at the third step, the second combi-
nation is performed as [5], ωk,n =

∑
l∈Nk

a2,lk(n)ψl,n, where
the coefficients {a2,lk} determine which nodes should share their
intermediate estimates {ψl,n} with node k [5]. We also assume that
all the combination coefficients are equal, i.e. clk(n) = a1,lk(n) =

a2,lk(n) =
ealk(n)∑N

j=1 e
ajk(n) . To update clk(n), we use a steepest descent

recursion as alk(n + 1) = alk(n) − µbαk(n)
∑

l∈Nk
dlk(n)|el,n|p,

where dlk(n) =
ealk(n) ∑N

j=1 e
ajk(n)−(ealk(n))2

(
∑N

j=1 e
ajk(n)

)2
.

IV. SIMULATION RESULTS

In our experiment, we consider a distributed network composed of
10 nodes (see Fig. 1). The size of the unknown sparse parameter vec-
tor ωo is M = 50. We consider two scenarios for the measurement
noise. First, the measurement noise vk,i is assumed to be Gaussian
with zero mean and variance σ2

n,i. The standard deviation (std) of
noise in sensors is assumed to be non-uniform as depicted in Fig.
2. Second, the measurement noise vk,i is assumed to be impulsive,
which follows a symmetric alpha-stable distribution with the char-
acteristic function φ(vk,i) = exp(−γ|vk,i|α) [9]. The characteristic
exponent α ∈ (0, 2] controls the impulsiveness of the noise (smaller α
leads to more frequent occurrence of impulses) and dispersion γ > 0
describes the spread of the distribution around its location parameter
which is zero for our purposes [9]. The dispersion parameter γ plays
a similar role as the variance of Gaussian distribution [5]. We assume
non-uniform dispersions for various sensors which are 0.006, 0.001,
0.2, 0.3, 0.002, 0.003, 0.2, 0.5, 0.005, and 0.002 for nodes 1 to 10,
respectively. For performance metric, similar to [8], we use mean
square deviation (MSD) defined as MSD(dB) = 20log(||ω−ωo||2).
Figure 2 shows the standard deviation of noise in various sensors and
the final learned weights for the proposed weighted diffusion LMP
in Gaussian noise environments. Figure 3 and 4 show MSD curves
versus iteration index for 4 different versions of the algorithms in
Gaussian and alpha-stable noise environments, respectively. As it is
seen in both Fig. 3 and 4, the proposed weighted diffusion LMP
algorithms outperform the conventional diffusion LMP algorithms
presented in [5].

V. CONCLUSION

A weighted diffusion LMP algorithm has been proposed for
distributed estimation in non-uniform noise environments. Unlike
the diffusion LMP algorithm, which utilizes the uniform distribution
of weights among sensors, the proposed weighted diffusion LMP
algorithm assigns different weights to the sensors with different
variances of noise to improve the performance. Compared with the
diffusion LMP algorithm, better performance has been achieved for
the proposed weighted diffusion LMP algorithm.



Fig. 1. Topology of the sensor network.
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Fig. 2. Non-uniform standard deviation (std) of Gaussian noise in sensors
(bottom) and corresponding estimated weights for the proposed weighted
diffusion LMP algorithm (top). Note that sensors with higher variance of
noise have lower weights and vice versa.
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Fig. 3. MSD versus iteration for different versions of diffusion LMP
algorithm in Gaussian noise environments, i.e. α = 2. The results are averaged
over 50 independent trials.
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Fig. 4. MSD versus iteration for different versions of diffusion LMP
algorithm in alpha-stable noise environments, i.e. α = 1.25. The results are
averaged over 50 independent trials.


