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I. INTRODUCTION

Solving inverse problems with iterative algorithms such as the
iterative shrinkage and thresholding algorithm (ISTA) [1], [2], [3],
[4], [5] is a popular method, especially for large data. In numerous
applications, due to time constraints, the number of iterations one
may apply is usually limited, consequently limiting the accuracy
achievable by traditional methods. Given a recovery error one is
willing to tolerate, an important question is whether it is possible to
modify the original iterations to obtain a faster convergence within
the allowed error.

In this work we provide theoretical foundations elucidating the
tradeoff between the allowed minimization error and the computa-
tional cost of iterative algorithms for solving inverse problems. In
particular, we aim at providing an explanation for the acceleration
provided for ISTA by the learned ISTA (LISTA) strategy [6], [7],
[8], [9]. In order to do that, we formally show that it is possible
to design algorithms with better convergence speed if we allow a
certain reconstruction error in the solution. It is interesting to note that
such a tradeoff is natural when working with real data, where both
the data and the assumed models are already noisy or approximate;
searching for the exact solution of an optimization problem where
all the variables are affected by measurement or model noise is an
unnecessary use of valuable computational resources.

II. ACCELERATED CONVERGENCE BY INACCURATE PROJECTIONS

We focus in this work on the projected gradient descent (PGD)
algorithm for recovering a signal x from a set of linear measurements
y = Mx + e. Let x ∈ K = {z ∈ Rd : f(z) ≤ R}, where
R = f(x), PK is a projection onto K, and f is a penalty function
(e.g., f(·) = ‖·‖1). Then the PGD estimate at iteration t is given by

zt = PK (zt−1 + µM∗(y −Mzt−1)) . (1)

It has been shown in [10] that PGD convergence depends on the
Gaussian mean width of Cf (x), the tangent cone of f at point x.

In many scenarios the signal x lies in a smaller set K̂ ⊂ K defined
by a function f̂ , which has a much smaller Gaussian mean width
on Cf̂ (x) and therefore using PGD with PK̂ will lead to faster
convergence. Yet, we may need to compromise and use PGD with PK
as calculating PK̂ may be infeasible or computationally demanding.

In this work we introduce a tradeoff between the reconstruction
error and convergence speed by approximating the projection onto
K̂ by an inaccurate “projection” composed of a simple projection
p(·) (e.g., a linear or an element-wise projection) and the standard
projection onto K, PK, such that (i) p introduces only a slight
distortion ε into x; and (ii) the projection onto the tangent cone
Ĉ = Cf̂ (x) of f̂ at point x is well approximated by a projection
using p(·) followed by a projection onto the tangent cone Cf (p(x))

of f at point p(x) (also incurring an ε error). Plugging this inaccurate
projection into the PGD step results in the inaccurate PGD (IPGD)
iteration (compare to (1))

zt+1 = PK (p (zt + µM∗(y −Mzt))) . (2)

We proved that the convergence speed of IPGD is smaller than the
one of PGD with the projection PK but with an additional tolerance
error of order ε. Therefore, if ε is small and of the order of the allowed
error (due to noise of model approximation for example), and we have
a budget for only a small number of iterations, IPGD will provide a
faster convergence than PGD with the original projection PK.

III. RELATION TO SPARSE RECOVERY AND LISTA

To illustrate our theory, we generate sparse vectors with a tree
structure such that the magnitude of the representation entries are
smaller in the lower tree levels. We compare PGD with a projection
onto K being the sparse vectors set (IHT) [11], IPGD with the same
set K and p as a projection onto the first layers of the tree, and PGD
with a projection onto the “ideal set” K̂ of sparse tree structures
(see [12]). Note that the more levels we add in the projection p, the
smaller the approximation error ε turns out to be. Figure 1 presents
the signal reconstruction error ‖x− zt‖2 as a function of the number
of iterations for PGD and IPGD.

While in the case of the tree sparsity model it is easy to define
K̂, we present next several examples for which it is hard to set
K̂ accurately. Yet, we may still find a projection p that helps
to approximate K̂. In these cases IPGD with this p gets better
convergence compared to PGD.

In the case of spectral compressed sensing [13], one wants to
recover a sparse representation in a dictionary that has high local
coherence. To demonstrate how our technique can be helpful for this
scenario, we use a function p(·) that zeros neighboring entries in a
given representation with IPGD and compare it to PGD with hard
thresholding. Fig. 2 demonstrates that IPGD improves the recovery.

Another possible strategy to improve the reconstruction quality
is to use side information on the recovered signal [14], [15]. We
demonstrate this approach, in combination with our proposed frame-
work, for the recovery of a sparse vector under the discrete cosine
transform (DCT), given information of its representation under the
Haar transform. Fig. 3 presents the result.

In many scenarios, we may not know what type of simple projec-
tion causes PK(p(·)) to approximate K̂. In these cases it is possible to
learn this projection. Such an approach is taken in the LISTA scheme
(see Fig. 4), which succeeds to accelerate the ISTA iteration in this
way. Though LISTA uses a proximal mapping and not a projection
as in our scheme, we claim that our theory provides an explanation
for its accelerated convergence. More details appear in [16].
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Fig. 1. Reconstruction error as a function of the iterations (left) and
running time (right) for sparse recovery in a scenario of a sparse vector with
tree structure. We generate the non-zero entries in x independently from a
Gaussian distribution with zero mean and variance σ2 = 1 if they are at
the first two levels of the tree, σ2 = 0.12 if they are at the second level,
and σ2 = 0.012 for the rest of the levels. This figure demonstrates the
convergence rate of PGD with projections onto the sparse set and sparse tree
set compared to IPGD with p that projects onto a certain number of levels of
the tree and IPGD with changing p that projects onto an increasing number of
levels as the iterations proceed. Notice that while PGD with a projection onto
a tree structure converges faster than IPGD as a function of the number of
iterations (left figure), it converges slower than IPGD if we take into account
the actual run time of each iteration, as shown in the right figure, due to the
higher complexity of the PGD projections.
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Fig. 2. Reconstruction error as a function of the iterations for sparse recovery
in a scenario of a dictionary with high coherence between neighboring atoms.
We generate a k-sparse vector, with k = 20, of dimension d = 128 in a
four times redundant DCT dictionary such that the minimal distance between
neighboring atoms in this vector is greater than 5. The value in each coefficient
is generated from the normal distribution. Then we put random Gaussian
values at the neighboring coefficients of each active atom in the representation,
with zero mean and variances σ2 = 0.052 for the neighbors at distance 1
and 2. Note the improved convergence of IPGD compared to PGD.
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Fig. 3. Reconstruction error as a function of the iterations for sparse
recovery with side information. This demonstrates the convergence rate of
PGD compared to IPGD. Our sampling matrix is M = AD∗, where
A ∈ R700×1024 is a random matrix with i.i.d. normally distributed entries,
and D is the DCT dictionary. We use random patches of size 32 × 32,
normalized to have unit `2 norm, from the standard house image. Note that
these patches are not exactly sparse either in the Haar or the DCT domains.
We use IPGD with p = DPDT , where for IPGD oracle P projects onto
the columns of the Haar matrix that contain 95% of the energy of the signal;
for IPGD oracle changing P projects onto an increasing number of columns
from the Haar basis ordered according to their significance in representing the
signal; for IPGD P projects onto the first 512 columns of that Haar basis;
and for IPGD changing P projects onto an increasing number of columns
from the Haar basis. Note that IPGD does not converge to zero due to the
error ε introduced by the projection p.

Fig. 4. The LISTA scheme.
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