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Although image denoising has sometimes been considered as a
solved problem [1], it is still a very active research topic. Although
most methods being developed are for generic images, in some
applications the image is known to belong to a certain class (e.g.,
text, face, fingerprints) and this knowledge should be exploited. One
way to do so is to use an external method, based on a dataset of clean
images from that class, rather than a general purpose set of natural
images [2], [3]. Specifically in patch-based methods, the rationale is
that the statistical properties of the patches in a class-specific dataset
are better adapted to the underlying clean image than if using a
generic set of natural images.

Denoting a pair of clean and corresponding noisy patches as x,y ∈
Rp, the observation model is y = x+v, where v is white Gaussian
noise of known variance σ2. If P (x) is a prior for x, its minimum
mean squared error (MMSE) estimate is the posterior expectation

x̂ = E[x|y] =
∫ +∞

−∞
xP (x|y) dx =

∫ +∞

−∞
x
P (y|x)P (x)

P (y)
dx

where P (y|x) ∝ e
− 1

2σ2
‖y−x‖22 . Much of the work on patch-based

denoising can be seen as the search for good priors and/or ways to
approximate the posterior expectation E[x|y].

External non-local means (NLM) methods estimate the underlying
clean patch x as a weighted average of a set of clean patches in the
external dataset xj , j = 1, .., n,

x̂ =

( n∑
j=1

wj

)−1 n∑
j=1

wj xj , with wj = e
− 1

2σ2
‖y−xj‖22 . (1)

It turns out that (1) can be seen as a non-parametric Monte Carlo
approximation of E[x|y] using self-normalizing importance sampling
(IS, [4]), with P (x) as a proposal density and assuming that xj ,
j = 1, .., n, are samples thereof (see a related observation in [5]).

At the other extreme of the parametric/non-parametric spectrum,
the methods in [6], [7] approximate P (x) as a single Gaussian fitted
to a collection of similar patches in the noisy image, from which the
MMSE estimate is obtained in closed form. Semi-parametric methods
use Gaussian mixtures (GM) to approximate the prior, learned either
from external data [8], or from the noisy image itself [9]. The MMSE
estimate under a GM prior also has closed form [9]. Other non-
Gaussian models (or mixtures of densities other than Gaussians) are
more difficult to use, since in general the corresponding MMSE esti-
mate under Gaussian noise does not have a closed form expression.

In this paper, we use IS to perform class-adapted image denoising,
by using a more sophisticated and more adaptive prior than a
Gaussian (or mixture thereof), for which the MMSE does not have
a closed form expression. Our method consists of three main steps:

1) The external dataset of clean image patches is clustered by
fitting a non-Gaussian mixture model. The rationale is that it
has been shown that the statistics or image patches are better

described by leptokurtic (i.e., with heavier tails than a Gaussian)
distributions [10]. Specifically, we adopt generalized Gaussian
(GG) densities. In the parameter estimation step of the EM-
type algorithm, we use the method in [11]. After running this
clustering algorithm, the subset of clean patches assigned to
the m-th cluster (GG component) is denoted as XGG

m .
2) Each noisy patch is assigned to one of the clusters obtained in

the previous step. If the cluster densities of the clean patches
were Gaussian (say, with mean µm and covariance Σm, for the
m-th cluster), the corresponding likelihoods of noisy patches
would also be Gaussian, with the same mean, and covariances
Σm +σ2I [8], [9]. However, since we are using GG densities,
the likelihoods do not have a simple expression, making it
impractical to assign the noisy patches to the clusters via
maximum likelihood (ML). To overcome this difficulty, we fit
a Gaussian density to the subset of patches assigned to each
GG cluster XGG

m , and classify each noisy patch into one of the
clusters via ML using these Gaussian approximations.

3) Finally, after assigning each noisy patch to one of the clusters,
the corresponding MSSE estimate is approximated via IS (see
(1)), since it does not have a closed form expression under the
GG cluster density. One approach would be to generate samples
from the assigned GG distribution. Another approach, which we
use in this work, is simply to sample clean patches from the
assigned cluster XGG

m . In order to speed up the algorithm, for
each noisy patch, only 800 patches from each distribution are
selected in order to obtain the IS-based MMSE estimate. The
IS viewpoint of (1) allows to use the improvements which have
been recently proposed for this sampling method. In particular,
one of the main shortcomings of using IS is degeneracy of
the weights, due to the large dynamic range of the importance
weights wj . In order to alleviate this shortcoming, we use the
method recently proposed in [12], which simply applies hard
thresholding to the importance weights wj before computing
the sums in (1). The obtained patch are returned to their original
position in the image and are averaged in the overlapped pixels.

Notice that step 1 only needs to be applied once for a given dataset
of class-specific images, while steps 2 and 3 are applied to every
image to be denoised.

We report preliminary experimental results using the face image
database in [13] and the text image database in [2]. For each dataset
of images, 5 images were randomly selected as test images, and the
other images were selected for training. In the prior learning step,
the initialization is obtained by k-means algorithm with 20 clusters.
For the multivariate GG density, the exponent was empirically set
to 0.9, which was found to lead to good denoising results. In all
the experiments the proposed method outperforms other general or
class-specific methods for image denoising, as reported in Table I.



TABLE I: Denoising results for face image denoising using the Gore face database in [13]. The results are averaged over 5 test images.

σ = 20 σ = 30 σ = 40 σ = 50
BM3D [14] 31.88 29.64 27.57 26.98
EPLL (generic) [8] 31.66 29.43 27.74 26.58
Class-specific EPLL 32.34 30.16 28.49 27.28
External Non-local means 31.81 30.08 28.75 27.48
Luo et. al. [2] 32.98 30.89 29.24 28.01
Ours (Guided multivariate Generalized Gaussian) 33.09 30.99 29.48 28.08

Fig. 1: Comparison of different external denoising methods for class-
specific text images. For each method, the results arveraged for 5 text
images.
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Fig. 2: An example of denoising of a face image in the Gore
database [13] (for σ = 30): (a) BM3D (PSNR=29.46); (b)EPLL
(PSNR=28.97); (c) class-specific EPLL (PSNR=29.91); (d) external
non-local means (PSNR=30.97); (e) Luo et. al. [2] (PSNR=32.20);
(e) this work (PSNR=33.02).
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