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Over the past decade, the incredible growth of data aggregation has
outpaced our ability to effectively process the data we acquire. Often,
due to memory constraints, one must consider online or streaming
methods, processing only small fractions of a dataset at once. This
is especially true in the context of machine learning. For example,
stochastic gradient descent [1] has been applied in many contexts,
famously in deep learning [2], where massive datasets frustrate the
exact computation of parameter gradients.

In this work, we are interested in the case of streaming computa-
tion, which bridges the gap between offline and online algorithms.
We denote online algorithms as those which process only a single
data point at once, and offline algorithms as those which consider
all available data at once. There exists a natural trade-off between
these two settings: while the memory requirements are optimized by
online approaches, accuracy is optimized by offline ones. Specifi-
cally, we attempt to answer the following question. Given a dataset
Y = {y1,y2, . . . ,yM}, assuming the data points are generated by
a known process, what is the optimal manner in which to divide the
dataset, Y = {Y1,Y2, . . . ,YB}, so as to maximize accuracy while
minimizing the number of data points, m = M/B > 1, in each
of these so-called mini-batches? How do we best quantify this trade-
off? What are the best algorithms to perform learning in the streaming
setting? The answers to these questions have a direct and practical
impact on the challenges data scientists face daily.

We answer these questions in a quantitative and insightful manner
in two different contexts: in supervised learning, via binary-weights
logistic [3], [4] and sparse-weights linear regression (SLR) [5], [6];
and in unsupervised learning, via Gaussian mixture models. By build-
ing on the analysis of these models in the offline setting accomplished
with the methodology of statistical physics [3], [4], [7]–[13], we
show the existence of interesting phase transitions appearing for
these streaming inference problems. Their characterization provides
information about the learning error that is achievable both in terms of
infomation-theoretic limits and computational tractability. We adapt
the approximate message passing (AMP) algorithm to the mini-batch
setting (Mini-AMP). In the streaming setting, the theory we develop
here characterize the performance of this Mini-AMP algorithm. We
analyze in detail how mini-batch learning interpolates between the
purely online and the offline case. Our quantitative analysis provides
a basis for an optimal choice of the mini-batch size.

Denoting the set of N parameters to be learned as the vector x, we
consider the streaming problem within a Bayesian framework [14]–
[16]. Given a mini-batch, the posterior on x is dependent upon the
posterior given the mini-batch processed before it,

P (x| Yk, . . . ,Y1︸ ︷︷ ︸
Dk

) =
1

Z(Yk)

∏
y∈Yk

P (y|x)P (x|Dk−1), (1)

where k denotes the mini-batch index. The posterior at the first
mini-batch is given by P (x|D1) = 1

Z(Y1)

∏
y∈Y1 P (y|x)P0(x),

where P0(x) is a prior distribution on the unknown parameters.
The functions Z(·) are normalizations parameterized by the mini-
batch data. For SLR, where y = Fx + N (0,∆IM ) for a matrix
F ∈ RM×N , we write the likelihood P (y|x) = N (Fµ · x,∆IM ).
For the perceptron, where y = sign(Fx + N (0,∆IM )), we use a
probit likelihood, P (yµ|zµ , Fµ · x) = 1

2
erfc(− yµzµ√

2∆
). For the

online case m = 1, the above definition is easily factorized and has
been studied under the monikers online Bayesian learning [14] and
assumed density filtering [17].

To tackle the streaming problem for m > 1, we turn to AMP
in order to perform approximate inference of P (x|Dk). We also
use AMP for low-rank matrix factorization [18], [19] to investi-
gate the case P (U, V (k)|Dk) ∝

∏
Y ∈Yk

∏
ij P (Yij |Wij , Ui ·

V
(k)
j ) × P (U, V (k−1)|Dk−1), which is especially pertinent to both

streaming clustering and recommender systems. Using AMP, we find
the minimum mean-square-error (MMSE) estimate of x under an
approximation of these posteriors.

We study the behavior of Mini-AMP for known P0(x) in the
thermodynamic limit, N →∞, using state evolution and the replica
free energy, both of which we adapt to the streaming setting in a
novel way. These two approaches give us an understanding of the
limiting performance of Mini-AMP. Analyzing Mini-AMP for both
SLR and perceptron learning via these techniques, we recover a set
of phase transitions over the space of relative batch sizes versus the
total number of data points, shown in Figs. 1 and 2, respectively.
One might intuitively assume that processing more batches is always
advantageous. Indeed, for early batches, we observe an exponential
decay in MSE. Surprisingly, the decay ceases to be exponential as
the batch size exceeds a certain critical point, and instead we see an
abrupt decline in the MSE after a few batches have been processed,
behavior typical of first-order phase transitions. Using the replica
free energy, we demonstrate the occurance of this phase transition as
local high-MSE solutions disspear at this critical batch size, causing
a precipitous jump to favorable low-MSE solutions.

Besides showing a close correspondence between random realiza-
tions of synthetic problems with finite N to our N →∞ predictions
for SLR, perceptron learning, and low-rank matrix factorization,
we also applied our approach to streaming clustering of real-world
datasets. Since the underlying generating distributions are, depending
on perspective, unknown or non-existent, we cannot exactly predict
the behavior of Mini-AMP. However, as shown in Fig. 3, Mini-AMP
compares favorably to state-of-the-art mini-batch K-means [20].
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Fig. 1: MSE obtained in the SLR problem using many different batch
sizes. We use a transformed y axis αbatch

α
= 1

k
. Solid/dashed red lines

follows the impossible-hard and hard-easy transition respectively; the
white line follows the error for a fixed batch size αbatch = 0.1. Here
∆ = 0 and ρ = 0.3.
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Fig. 2: Error obtained in the Ising perceptron for many different batch
sizes; white lines follow the error for fixed batch sizes, solid and
dashed red lines give static (impossible-hard) and dynamic (hard-
easy) transition respectively. Here ∆ = 10−8.
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Fig. 3: Applying the mixture of Gaussians model on real data. Left:
mean-squared error in U (centroids) and 0-1 loss in V (labels) using
a batch size of αbatch = 0.05 over the MNIST dataset, for clustering
digits of size N = 784 in K = 3 different classes (0, 1 and 2).
Blue/red circles give the performance of Mini-AMP and of the mini-
batch K-means algorithms respectively. Right: same as left figure
but over the 20 newsgroups dataset, for topic modelling using N =
1000 words and K = 3 top-level hierarchies (comp, rec and sci).
Light/dark blue lines in the bottom figure give the results for the 1st
and 2nd passes respectively. In both cases results are averages over
100 different orders of presentation.
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