High Dimensional Dictionary Learning and Applications

Jeremias Sulam, Michael Zibulevsky and Michael Elad
Computer Science Department
Technion - Israel Institute of Technology
{jsulam,mzib,elad} @cs.technion.ac.il

Abstract—In this work, we show how to efficiently handle bigger
dimensions and go beyond the small patches in sparsity-based signal
and image processing methods. We build our approach based on a new
cropped Wavelet decomposition, which enables a multi-scale analysis with
virtually no border effects. Employing this as the base dictionary within
a double sparsity model, and to cope with the increase of training data,
we present an Online Sparse Dictionary Learning (OSDL) algorithm to
train this model effectively, enabling it to handle millions of examples.
The resulting large trainable atoms — frainlets — not only achieve state
of the art performance in dictionary learning when compared to other
methods, but it also opens the door to new challenges and problems that
remained unattainable until now. In addition to reviewing the capabilities
of the OSDL algorithm, we present very recent results on inpainting of
large regions of face images, as well as preliminary results on full end-
to-end image compression.

[. INTRODUCTION

Sparse representations has shown to be a powerful prior in several
inverse problems in image processing. This model assumes that a
signal y € R™ can be well approximated by a decomposition of the
form Dx, where D, termed dictionary, is a matrix of size n X m
containing signal atoms in its columns, and a sparse vector X €
R™. The problem of finding such a sparse vector is termed sparse
coding, and is usually formulated in terms of a pursuit algorithm.
When combined with the ability to learn the dictionary from real
data, and for a specific task, this model has yielded a number of
state of the art results [1], [2], [3], [4]. A series of different dictionary
learning algorithms have been proposed [5], [6], [1], [7], most of them
employing an alternating minimization approach minimizing over the
set of sparse representations and D.

However successful, the dictionary learning problem has tradi-
tionally been restricted to the domain of small image patches,
thus limiting the kind of problem these methods can address. This
limitation arises mainly from computational constraints, but also from
the fact that the degrees of freedom of the problem — and the amount
data required — become unmanageable as the dimension increases.
Some works have attempted to provide more efficient dictionary
learning algorithms. The work presented in [7], for example, proposed
to lower the complexity of using (and learning) the dictionary by
suggesting an adaptable but completely separable structure, yielding
an algorithm term SEDIL (Separable Dictionary Learning). However
interesting, the complete separability constraint is often too restrictive
to represent general images of high dimensions, and its batch-learning
algorithm is restricted to relatively small training sets.

II. TRAINLETS

In a very recent work [8], we have presented the Online Sparse
Dictionary Learning (OSDL) algorithm, which is able to manage
signals of dimensions in the order of the several thousands and
beyond. This approach builds on the work of [9], which models the
dictionary D as the product of a fast and efficient base dictionary,
and an adaptable sparse factor A. This lowers the complexity of both,
the degrees of freedom of the problem and the computational cost

of applying the dictionary. Formally, the (sparse) dictionary learning
problem is formulated as

rg’i)ré %||Y7<1>AX||% subject to { HZHE iz 3; , (D
where Y is a matrix having the training examples in its columns,
X contains the corresponding representation vectors, and the matrix
A is column-wise sparse. In particular, we employ a novel Cropped
Wavelets dictionary as the operator ®. This operator, also introduced
in our work, enables an optimal multi-scale decomposition (in a
sparse sense) with virtually no border effects. In order to cope
with the increase of training data, we suggest a dictionary learning
algorithm based on ideas from stochastic optimization [10]. In a
nutshell, the algorithm performs sparse coding of a mini-batch of
training examples with (Sparse) OMP, and then updates a subset of

the dictionary atoms through a variation of the NIHT algorithm [11].

III. EXPERIMENTS AND APPLICATIONS

The OSDL algorithm enables us to apply dictionary learning
on millions of training images of relatively large size, obtaining
insightful results. For instance, such a (general purpose) dictionary
for 32 x 32 natural image patches is shown in Figure 1: the OSDL
learns very different atoms, as can be seen from the piece-wise-
constant ones, to textures at different scales and edge-like atoms. It is
interesting to see that Fourier type atoms, as well as Contourlet and
Gabor-like atoms, naturally arise from the data. In addition, such a
dictionary obtains some flavor of shift (and even rotation) invariance,
as similar patterns appear in different locations in different atoms.

One can leverage the representation power of the OSDL algorithm
to design global atoms of face images, and then employ these to
recover or infer large missing regions in the image. This extreme
image restoration problem intrinsically requires some kind of global
model, as any other local or patch-based alternative would fail in
generating the correct content for this specific context. Figure 2
exemplifies one of our results reported in [12], obtained with an ad-
hoc dictionary for face images of size 100 x 100 (not shown in this
paper). Building on a similar model, one can suggest a complete
compression algorithm for general face images. Preliminary results
for such an approach are presented in Figure 3, outperforming both
JPEG and JPEG 2000 compressions algorithms. These, and more,
results demonstrate that the OSDL algorithm not only achieves state
of the art performance in dictionary learning when compared to
other methods (for example, in terms of representation error) but
it also opens the door to new challenges and problems that remained
unattainable until now.
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Fig. 1: General purpose dictionary. Subset of the learned atoms on millions on natural of images patches (32 x 32).
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Fig. 2: Inpainting application. From left to right: masked image, patch propagation [13], PCA, SEDIL [7], Trainlets [8], and the original
(100 x 100) image.
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Fig. 3: Face images compression. From left to right, the results of: JPEG, JPEG2000 (not including file-header) and Trainlets, and the original
(100 x 100) image. Test images not including in the training phase.
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