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I. COHERENT ARRAY IMAGING AND SKETCHING

We address a novel matrix sketching problem motivated by coher-
ent imaging using antenna arrays. Sketching uses a suitable undeter-
mined matrix to create a lower dimensional sketch of a linear system
in problems like least squares regression and low rank approximation
[1]. Research in this area has focused on reducing the time required to
compute the sketch itself, as this can be as expensive as the original
problem. The problem we address has a different flavor in that the
sketching matrix has a particular structure and is motivated by a
coherent imaging problem.

Coherent imaging in antenna arrays is performed by emitting
signals onto a target and using the received reflections for recovery.
The process of probing the target actively is done using beamforming,
wherein specific combinations of the array inputs and outputs (beams)
are emitted and measured [2, 3]. One of the bottlenecks in the
imaging process is the number of beams required. Some techniques
to overcome this bottleneck have been discussed in [4].

We present a novel trade-off between the number of beams and
the bandwidth of the acquisition. In contrast to previous work on
compressed sensing in array processing [5, 6, 7], we do not exploit
any sparsity prior for the scene being imaged. Our model is simply
that the scene is at a fixed, known range. In this case, if we measure
the m array outputs independently or with a set of m beamforms, the
scene can be captured by using a single frequency (dictated by the
array geometry) and additional frequencies offer no new information.
However, with a set of generic weights (aperture codes), longer
wavelengths do reveal new information and this gives us the afore-
mentioned trade-off. Wide-band excitation is only as expensive as
narrow band excitation and hence, aperture codes can lead to reduced
costs. Our results revolve around finding conditions under which
aperture coding preserves the entire range of the linear operator
that maps the scene to the array measurements. Thus the results are
independent of any model on the scene itself.

II. PROBLEM FORMULATION

To analyze this problem, we setup the aperture codes as a special
sketching matrix on the imaging operator. If a scene is probed with
k frequencies, at ith frequency, the imaging process can be modeled
as yi = Aix0 where x0 ∈ Rn is the target image, yi ∈ Cm is the
output of an m-element array and Ai is the linear operator mapping
the scene to the measurements. For k frequencies, the entire process
can be modeled as y = [yT1 yT2 · · · yTk ]T = [AT

1 A
T
2 · · · AT

k ]Tx0 =
Ax0. If a common set of l aperture codes are used at each frequency,
with l < m, the aperture coded outputs can be expressed as

Φy = ΦAx0 = Y x0 (1)

where Φ is a block diagonal matrix with k repeated blocks, as shown
below. We refer to such a matrix as an RBD (repeated block diagonal)
matrix.

Φ =

φ 0 · · · 0
0 φ · · · 0
0 0 · · · φ

 (2)

We seek to establish that the least squares solutions of (1) and that
of the original system y = Ax0 are close.

III. PRELIMINARY RESULTS

We recast this problem to that of capturing the subspace spanned
by the significant right singular vectors of A using Φ. Similar to [8],
we seek to establish a bound on ‖(I − PY ∗)A∗‖ where PY ∗ is the
projection onto the range of Y ∗ and ∗ denotes conjugate transpose.
To simplify the analysis, we assume that A has an exact rank r and
that each Ai has rank ri. Results similar to [8] can be used to show
that if l > maxi(ri), then ‖(I − PY ∗)A∗‖ = 0. We intend to show
that l can be much smaller. To do this, we decompose A as below
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 = CV T (3)

where Cij ∈ Rm×dj and each Cii is full column rank when di 6= 0.
V has orthonormal columns and is such that [V1 · · ·Vi] includes an
orthobasis of row space of Ai. Intuitively, di’s represent contribution
of Ai to the already existing row space. Our main result is:

Theorem 1. For a matrix A with di’s defined as in (3) and a small
oversampling factor p, the number of random vectors per block l
needed to capture the row space of A using an RBD matrix Φ with
standard Gaussian random blocks is such that

l ≤ max
i
di = d0 + p (4)

This holds with probability at least 1− 3p−p.

This bound is tight when the row groups Ai span orthogonal
subspaces (Cij = 0 ∀i 6= j). In other cases, l can be much smaller.

Although our result concerns exactly low-rank matrices, it can be
generalized to matrices which are approximately low rank using per-
turbation theory for projection matrices [9]. In general, for matrices
with numerical ranks much smaller than the ambient dimensions, the
subspaces spanned by the Ai’s will overlap. This overlap reduces
the number of random vectors needed per block. This is especially
relevant in the array imaging setting because the row groups are such
that row(Ai) is approximately nested in row(Aj) ∀i < j.

Figure 1 shows the error ‖(I−PY ∗)A∗‖ and the normalized spec-
tra of the matrices A and ΦA for a test matrix of size 2000× 1000,
with maxi(ri) ≈ 300 and d0 = 110. As the figures show, the row
space was captured with l ≈ 45.

In coherent imaging, yi’s are the samples of the 2D Fourier
transform of the image in a trapezoidal area, as shown in Fig. 3.
Conventional beamforming uses a number of beams of the order of
maxi(ri). Hence, aperture coding can reduce the number of beams
needed. This can be seen in Fig. 2 where simulations were performed
for an array with 80 × 80 elements. While conventional method
required about 800 beams, our method provides good reconstructions
with just 50 randomized beams with 40 pulse frequencies between
2GHz and 4GHz.
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Fig. 1: (a) shows the error ‖(I − PY ∗)A∗‖ and (b) shows the normalized spectrum of A and Y for l = 45. The number of significant
singular values of A and Y can be seen to be approximately the same and hence they have approximately the same rank and row space.
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Fig. 2: A target scene reconstructed using aperture codes (a) shows the reconstruction obatined using conventional methods, which need
about 800 beams for the settings of the experiment. (b), (c), (d) show reconstructions obtained using 200, 50 and 32 aperture codes.
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Fig. 3: The array outputs at different frequencies are the samples of
the Fourier transform of the scene. The samples at the top row are
obtained for the highest excitation frequency. For a scene at a fixed
depth, the 2D Fourier transform is a function of only ωx and hence
we observe samples of the same function along nested intervals as
we move from the lowest frequency to the highest.
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