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Abstract—We consider log-supermodular models on binary variables,
which are probabilistic models with negative log-densities which are
submodular. These models provide probabilistic interpretations of com-
mon combinatorial optimization tasks such as image segmentation. In
this paper, we focus primarily on parameter estimation in the models
from known upper-bounds on the intractable log-partition function.
We show that the bound based on separable optimization on the base
polytope of the submodular function is always inferior to a bound based
on “perturb-and-MAP ” ideas. Then, to learn parameters, given that
our approximation of the log-partition function is an expectation (over
our own randomization), we use a stochastic subgradient technique to
maximize a lower-bound on the log-likelihood. This can also be extended
to conditional maximum likelihood. We illustrate our new results in a
set of experiments in binary image denoising, where we highlight the
flexibility of a probabilistic model to learn with missing data.

I. INTRODUCTION

Submodular functions provide efficient and flexible tools for learn-
ing on discrete data. Several common combinatorial optimization
tasks, such as clustering, image segmentation, or document summa-
rization, can be achieved by the minimization or the maximization
of a submodular function [1], [4], [8]. The key benefit of submod-
ularity is the ability to model notions of diminishing returns, and
the availability of exact minimization algorithms and approximate
maximization algorithms with precise approximation guarantees [7].

In practice, it is not always straightforward to define an appropriate
submodular function for a problem at hand. Given fully-labeled
data, e.g., images and their foreground/background segmentations
in image segmentation, structured-output prediction methods such
as the structured-SVM may be used [10]. However, it is common
(a) to have missing data, and (b) to embed submodular function
minimization within a larger model. These are two situations well
tackled by probabilistic modelling. This work has been published in
the proceedings of the 2016 NIPS conference [9].

II. LOG-SUPERMODULAR MODELS

We consider submodular functions on the vertices of the hypercube
{0, 1}D . For any two vertices of the hypercube, x, y ∈ {0, 1}D ,
a function f : {0, 1}D → R is submodular if f(x) + f(y) >
f(min{x, y}) + f(max{x, y}), where the min and max operations
are taken component-wise. We will only use the fact that f can be
efficiently minimized on {0, 1}D , by a variety of generic algorithms,
or by more efficient dedicated ones for subclasses such as graph-cuts.
Log-supermodular models are introduced in [3] to model probability
distributions on a hypercube, x ∈ {0, 1}D , and are defined as

p(x) =
1

Z(f)
exp(−f(x)),

where f : {0, 1}D → R is a submodular function such that f(0) =
0 and the partition function is Z(f) =

∑
x∈{0,1}D exp(−f(x)). It

is more convenient to deal with the convex log-partition function
A(f) = logZ(f) = log

∑
x∈{0,1}D exp(−f(x)). In general, the

calculation of the partition function Z(f) or the log-partition function

A(f) is intractable, as it includes simple binary Markov random
fields—the exact calculation is known to be #P -hard [6].

III. UPPER-BOUNDS ON THE LOG-PARTITION FUNCTION

Two upper bounds of log-partition function are presented:

• [3]: AL-field(f) = min
s∈B(f)

D∑
d=1

log (1 + e−sd), where B(f) is a

base polyhedron of f(x), i.e.

B(f) = {s ∈ RD|s(1) = f(1), ∀x ∈ {0, 1}D : s(x) ≤ f(x)}.

• [5]: ALogistic(f) = El
[

max
y∈{0,1}D

lT y − f(y)
]
, where l is a

logistic distributed random vector.
• We proved the inequality: ALogistic(f) ≤ AL-field(f)

IV. PARAMETER LEARNING VIA MAXIMUM LIKELIHOOD(MLL)

We introduce parameters governing the distribution. Set F is a
considered family of submodular functions has the form f(x) =
K∑
k=1

αkfk(x)−tTx and α ∈ RK+ , t ∈ RD , f1, . . . , fK are submodular

base functions. Our goal is to estimate the parameters from the sample
x1, . . . , xN using MLL approach. Firstly, we prove that if we replace
A(f) by AL-field(f), we obtain a degenerate trivial solution. We were
able to learn nonzero parameters using ALogistic(f) and a descent
algorithm. Our second contribution is the use of stochastic gradient
descent, not on the data as usually done, but on our own internal
randomization.

A. Extension to conditional maximum likelihood

We consider a joint model over two binary vectors x, z ∈ RD ,
as follows p(x, z|α, t, π) = p(x|α, t)p(z|x, π) = exp(−f(x) −
A(f))

∏D
d=1 π

δ(zd 6=xd)
d (1−πd)δ(zd=xd), which corresponds to sam-

pling x from a log-supermodular model and considering z that
switches the values of x with probability πd for each d, that is,
a noisy observation of x. Thus, if we observe both z and x, we
can consider a conditional maximization of the log-likelihood (still a
convex optimization problem), which we do in our experiments for
supervised image denoising(Fig. 1), where we assume we know both
noisy and original images at training time. Stochastic gradient on
the logistic samples can then be used. As base submodular function
horizontal and vertical cuts are used. The principal feature of a
probabilistic approach is ability to deal with missing labels. While
supervised learning can be achieved by other techniques such as
structured-output-SVMs [10], [11], [12], our approach also applies
when we do not observe the original image, which we consider in
our experiments.
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(a) original image (b) noisy image (c) denoised image

Fig. 1: Supervised denoising of a horse image from the Weizmann
horse database [2].
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