
Non-convex blind deconvolution approach for sparse

radio-interferometric imaging

Audrey Repetti, Jasleen Birdi, and Yves Wiaux
Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh EH14 4AS, UK.

Abstract—New generations of imaging devices aim to produce high

resolution and high dynamic range images. In this context, the associated
high dimensional inverse problems can become extremely challenging

from an algorithmic view point. In addition, the imaging procedure

can be affected by unknown calibration kernels. This leads to the need

of performing joint image reconstruction and calibration, and thus
of solving non-convex blind deconvolution problems. In the recently

submitted paper [1], we developed a method to solve the joint imaging

and calibration problem in radio interferometry in astronomy. To
solve this problem, we leverage a block-coordinate forward-backward

algorithm, specifically designed to minimize non-smooth non-convex and

high dimensional objective functions. Here we describe the proposed

method and show its performance through simulation results.

I. INTRODUCTION

In image processing, the objective is to find an estimation of an

original unknown image x ∈ R
N from an inverse problem y =

Gx+w, where G is an observation matrix and w is a realisation of

an additive random noise. When G is perfectly known, this problem

can be efficiently solved using convex optimization tools [2], [3].

However, in practice, G is unknown and has to be calibrated, jointly

with the estimation of the image, leading to a blind deconvolution

problem. The latter is a challenging task, mainly due to the non-

linearity of the measurements, and, in the context of astronomical

radio-interferometry, this difficulty is multiplied manifold by the high

dimensionality of the underlying problem. Indeed, in this case, the

images of interest can reach gigapixel or terapixel size, while the

calibration variables correspond to a large number of low resolution

images related to each antenna of the telescope [4], [5]. In this context

adapted scalable approaches have to be developed.

II. PROPOSED BLIND DECONVOLUTION APPROACH

In radio-interferometry, the observations consists of under-sampled

Fourier measurements, acquired by antenna pairs indexed by (α, β) ∈
{1, . . . , na}

2, with α 6= β and na being the number of antennas

of the interferometer. These acquisitions are degraded by antenna-

based gains, acting as convolution kernels in the Fourier domain,

and which can be modelled as low resolution complex valued images

of dimension N . In this context, the objective is to estimate jointly

the original unknown image x and the direction dependent (DD) gain

associated with each antenna. In order to reduce the dimensionality of

this problem, we assume that for each antenna α, the associated gain

is band-limited and consists in only S ≪ N non-zero coefficients

in the Fourier domain, stored in a vector uα ∈ C
S . Under this

assumption, the measurements can be written as a data matrix

Y = D1XD
⊤

2 +W , where X ∈ C
N×N is the symmetric matrix

containing on each line/row a translation of the Fourier transform of

x, to model a convolution operation, W is a realization of an additive

i.i.d. Gaussian noise matrix, and D1 ∈ C
na×N (resp. D2 ∈ C

na×N )

is the sparse matrix containing on each line the non-zero coefficients

uα,1 = (uα(−s))s ∈ C
S (resp. uα,2 = u∗

α), centred at the measured

frequencies. Furthermore, we make use of prior information on bright

sources of the image by considering x as a sum of two images b+ǫ,

where b, with support S , is known, while ǫ has to be estimated. Then,

we propose to estimate jointly ǫ, and matrices D1 and D2 defining

their estimates as a solution to

minimize
ǫ,(uα,1,uα,2)16α6na

F (ǫ, (uα,1,uα,2)16α6na
)

+R(ǫ) +

na∑

α=1

Pα(uα,1,uα,2), (1)

where F is the data fidelity term chosen to be a least squares

criterion related to the observation model, and R (resp. Pα) is the

regularization term to incorporate a priori information in the image

(resp. DD gains). On the one hand, we use R to promote sparsity

(using an ℓ1 norm) in the restriction of ǫ to the complementary set

Sc of S , leveraging recent results in the compressive sensing theory

[6]. Moreover, we consider a positivity constraint in Sc, while, in S ,

we use bounds related to the possible errors appearing in b. On the

other hand, D1 and D2 corresponding to the same coefficients up

to a transformation, we choose Pα to control the distance between

uα,1 and uα,2. Moreover, we consider constraints on the amplitude

of the Fourier coefficients of the DD gains.

We propose to solve the non-convex non-smooth minimization

problem (1) using an alternating forward-backward approach based

on the algorithm proposed in [7], which comes with convergence

guarantees. Basically, this iterative algorithm alternates between

the estimation of the image ǫ and the estimation of variables

(uα,1,uα,2)16α6na
related to the DD gains, computing a gradient

step followed by a proximity step. More details on the model and

the method are given in [1].

III. SIMULATION RESULTS

To show the performance of the proposed approach, we computed

numerical experiments on simulated sky images of size 128 × 128,

consisting of point sources, generated randomly on two intensity

levels, considering na = 200 randomly distributed antennas, and

modelling DD gains with support of size S = 7× 7. More precisely

x = x1 + x2, where x1 is approximately known and has an energy

E(x1) = 10, while x2 is unknown and has a lower energy E(x2),
which we take to be either equal to 0.01, 0.1 or 1. The approximation

b of x1 is modelled such that b(n) = (1 + pz(n))x1(n) where

z(n) ∼ N (0, 1), and p > 0 determines the approximation degree of

x1. Then, the objective is to estimate the faint sources belonging to

x2. In Fig. 1 is shown the true second level x2 (left), its estimations

considering p = 0.01 (center), and p = 0.1 (right). We can observe

that in the cases when E(x2) ∈ {0.1, 1}, the positions of the

faint sources are recovered correctly. When E(x2) = 0.01, the

reconstruction is less accurate. However, it is worth noting that in

this case the errors considered between b and x1 are 10 to 100 times

larger than the intensity of sources in x2. Moreover, we compare our

approach with a state of the art method [8] for direction indepen-

dent effects calibration in radio-interferometry, where DD gains are

approximated by constant images instead of low-resolution images.

However, contrary to our method, [8] does not provide any sensible

reconstruction of x2. These results are attested by Fig. 2 which shows

an SNR comparison of the reconstruction of x2 using both methods.
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Figure 1. Top row: (left) True x2 with energy E(x2) = 0.01, and reconstructions obtained using the proposed method considering (center) p = 0.01 and (right) p = 0.1.

Middle row: (left) True x2 with energy E(x2) = 0.1, and reconstructions obtained using the proposed method considering (center) p = 0.01 and (right) p = 0.1. Bottom row:

(left) True x2 with energy E(x2) = 1, and reconstructions obtained using the proposed method considering (center) p = 0.01 and (right) p = 0.1.
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Figure 2. SNR values of the reconstructed second level x2 obtained varying p ∈ {0, 0.01, 0.025, 0.05, 0.075, 0.1} and considering (left) E(x2) = 0.01, (center)

E(x2) = 0.1 and (right) E(x2) = 1. Black curves are obtained using method [8], and blue curves corresponds to the reconstructions obtained using the proposed method. Results

are given for an average over 10 realisations varying the antenna distribution, the random image, the approximation b, and the DD gains.
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