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I. INTRODUCTION

Factoring and completing a partially observed low rank matrix is a
widely used technique in collaborative filtering [1], link prediction [2]
and sensor network localization [3], among other problems. Scalable
methods [4] and rigorous statistical consistency guarantees [5] have
been developed for this problem [4].

Most modern datasets however have additional information, either
as features or as pairwise relationships between variables. For exam-
ple, in the case of recommender systems, one can have demographic
information or a social network for users. In sensor networks, one
might have pairwise similarity information based on the actual loca-
tions of sensors. It makes sense to assume that using this additional
information will aid in making predictions, and recently, several
methods have been proposed to do the same [6], [7]. In this work,
we assume that we have access to weighted graphs that encode
relationships between the variables.

However, the statistical advantage of taking this extra information
into consideration comes at a cost. In particular, the computational
time of the algorithms developed in [6], [8] depends critically on
the number of edges in the graph. While one can obtain speedups
trivially by ignoring several edges (or the entire graph), this results in
losing (often substantial) statistical advantages obtained via making
use of the graph. A natural question then arises:

Can one retain most of the statistical advantages obtained due to
the graph information, while still ensuring computational efficiency?

In this work, we take first steps towards answering the above
question in the affirmative. We use methods developed for spectral
sparsification of graphs [9] to obtain sparse approximations of the
graphs in question that retain crucial spectral properties. When the
underlying graph is dense, the computational gains of using these
approximations can be significant. At the same time, we show that
the statistical performance is comparable to using the full graph. In
fact, our approach is a first step towards rigorously establishing a
graceful and efficient tradeoff between the computational gains and
the statistical power of using side information in matrix completion
and related problems.

II. PROBLEM SETUP, OUR METHOD, AND THEORY

Suppose Y ∈ Rm×n is the data matrix, and we only observe a sub-
set of the entries Yij ,∀(i, j) ∈ Ω, |Ω| = N � mn. Furthermore, we
assume we have access to the graphs Gw ∈ Rm×m and Gh ∈ Rn×n
which encode the relationships between variables corresponding to
the rows and columns of Y respectively. The goal is to estimate
the rest of Y . Let Lw, Lh be the corresponding combinatorial graph
Laplacians [10]. Then, the problem of matrix completion with graph
information can be written as follows:

min
W,H

1

2
‖PΩ(Y−WHT )‖2F+

λ

2
{Tr(WTLwW )+Tr(HTLhH)} (1)
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where W ∈ Rm×k, H ∈ Rn×k, and k is a bound on the rank
of Y . PΩ(·) retains those entries of the matrix that lie in the set
Ω. Using the graphs yields significant statistical advantages when it
comes to estimating Y . At the same time, the natural alternating
minimization procedure to solve (1) has a computational cost of
O ((N + nnz(Lh) + nnz(Lw)) k) [6].

Our approach instead is to use sparse approximations of Lh, Lw
(say L̃h, L̃w) to speed up the algorithm. To this end, we employ
spectral sparsification methods of [9], [11]. Let Ĥ denote the opti-
mizer of (1) with a W fixed such that σmin(W ) ≥ σw. Let H̃ denote
the optimizer of (1) with (a) the same W , and (b) 2L̃h substituted
instead of Lh. Then, we show the following.

Theorem 1: Suppose that L̃h is an ε−close spectral approximation
of Lh, then H̃ satisfies ‖H̃ − Ĥ‖2F ≤

2λ(1+ε)mn

Nσ2
w

Tr(ĤTLhĤ). Fur-
thermore, computational complexity of the entire procedure behaves
as O(Nk + n logn+m logn

ε2
k).

We show a similar statement for optimization w.r.t W . Theorem 1
demonstrates the tradeoff between error in each step of the alt-min
procedure and the computational complexity of the procedure. Our
initial experiments on both toy and real data suggest that such a
graceful computational-statisical tradeoff does exist in large scale
matrix factorization problems with graph side information.

III. EXPERIMENTS

We first tested the methods on toy data. We generated data with
power law graphs in the same spirit as [6], with the underlying target
matrix of size m = n = 3K, rank 20. For all methods considered,
we varied λ ∈ {10−3, 10−2, · · · , 101}. We also varied ε for graph
sparsification, and the number of measurements N obtained for the
training set, and corrupted the measurements with AWGN σ = 0.2.
We compute time taken for each method, and the resulting RMSE on
the test set (everything in the target matrix not in the training set).

Fig 1 shows that ignoring the graph yields poor performance, as
expected from a statistical standpoint. Importantly, as ε increases,
the performance deteriorates. This is again expected since larger ε
corresponds to a poorer graph approximation. Note however that
unlike the case with no graph, the RMSE is comparable to that
obtained using the full graph, even for low number of measurements.
Crucially, the time taken (Fig 2) is comparable to that with using no
graph, even for small ε (0.26). Figures 1 and 2 together show that
the statistical performance takes a minor hit, while the computational
gains obtained are significant.

We also tested our method on the Epinions dataset 1, which is a
recommender system with an accompanying social network among
users. We retained the top 8K users from the dataset, corresponding
to those with the most connections in the social network. Table I
again shows that we incur a very small penalty in the test RMSE,
while gaining in terms of time.

1http://www.trustlet.org/epinions.html
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Fig. 1. Test RMSE as number of measurements is varied, p = -0.1
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Fig. 2. Time taken as number of measurements is varied, p = -0.1

ε RMSE time
full 1.0613 11.186
0.0612 1.0613 9.624
0.0834 1.0614 10.24
0.1138 1.0614 10.296
0.1552 1.0613 10.576
0.2117 1.0614 10.088
0.2887 1.0617 9.297
0.3938 1.0617 9.220
0.5371 1.0620 8.283
0.7325 1.0620 8.867
0.9990 1.0629 8.867

TABLE I
PERFORMANCE ON THE EPINIONS DATASET. AGAIN, THE STATISTICAL DEGRADATION IS NEGLIGIBLE, BUT COMPUTATIONAL GAINS ARE SUBSTANTIAL.
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