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Abstract— One core advantage of sparse representations is the
e�cient coding of complex signals using compact codes. For instance,
it allows for the representation of any sample as a combination of
few elements drawn from a large dictionary of basis functions. In
the context of the e�cient processing of natural images, we propose
here that sparse coding can be optimised by designing a proper
homeostatic rule regulating the competition between the elements of
the dictionary. Indeed, a common design for unsupervised learning
rules relies on a gradient descent over a cost measuring represen-
tation quality with respect to sparseness. �e sparseness constraint
introduces a competition which can be optimised by ensuring that
each item in the dictionary is selected as o�en as others. We
implemented this rule by introducing a gain normalisation similar
to what is observed in biological neural networks. We validated
this theoretical insight by challenging the matching pursuit sparse
coding algorithm with the same learning rule but with or without
homeostasis. Simulations show that for a given homeostasis rule,
gradient descent performed similarly the learning of a dataset
of image patches. While the coding accuracy did not vary much,
including homeostasis changed qualitatively the learned features.
In particular, homeostasis results in a more homogeneous set of
orientation selective �lters, which is closer to what is found in
the visual cortex of mammals. To further validate these results,
we applied this algorithm to the optimisation of a visual system
to be embedded in an aerial robot. In summary, this biologically-
inspired learning rule demonstrates that principles observed in
neural computations can help improve real-life machine learning
algorithms.

It is observed that simple cell neurones in mammalian primary

visual cortex are selective to orientation, spatial localisation, and

frequencies [1]. It is demonstrated that developing a coding strategy

that maximises sparseness is su�cient to form receptive �elds that

account for all three of the above properties [2]. Visual items

composing natural images are o�en sparse, such that the brain

may use this sparseness to reconstruct images with only a few set

of these items [3]. �is is supporting the idea that an unsupervised

learning algorithm based on sparse coding could be use to describe

e�ciently image processing in the primary visual cortex.

Most of existing models of unsupervised learning aim at optimising

a cost de�ned on prior assumptions on representation’s sparseness.

For instance, learning is accomplished in SparseNet [4] on patches

taken from natural images as a sequence of coding and learning steps.

First, knowing a dictionary of receptive �elds Φi , the sparse coding

is achieved using a gradient descent over a convex cost derived from

a sparse prior probability distribution function of the coe�cients ai .
�en, knowing this sparse solution, learning is de�ned as slowly

changing the dictionary using Hebbian learning. In general, the

parameterisation of the prior has major impacts on results of the

sparse coding and thus on the emergence of edge-like receptive

�elds and requires proper tuning. In fact, the de�nition of the prior

corresponds to an objective sparseness and does not always �t to

the observed probability distribution function of the coe�cients. In

particular, this could be a problem during learning if we use the

cost to measure representation e�ciency for this learning step. An

alternative is to use a more generic `0 norm sparseness, by simply

counting the number of non-zero coe�cients:

C0(a|I,Φ) =
1

2σ 2

n
‖I − Φa‖2 + λ‖a‖0

It was found that by using an algorithm like Matching Pursuit,

the learning algorithm could provide results similar to SparseNet,

but without the need of parametric assumptions on the prior [5].

However, we observed that this class of algorithms could lead to

solutions corresponding to a local minimum of the objective function:

Some solutions seem as e�cient as others for representing the signal

but do not represent edge-like features homogeneously. In particular,

during the early learning phase, some cells may learn “faster” than

others. �ere is the need for a homeostasis mechanism that will

ensure convergence of learning. �e goal of this work is to study the

speci�c role of homeostasis in learning sparse representations and

to propose a homeostasis mechanism which optimises the learning

of an e�cient neural representation.

To achieve this, we �rst formulate analytically the problem of

representation e�ciency in a population of sensory neurones. For the

particular `0 norm sparseness, we show that sparseness is optimal,

in term of Shannon entropy, when average activity within the neural

population is uniformly balanced (i.e. each neurone is selected with

the same probability when encoding a large set of data). To achieve

this uniformity, we de�ne an homeostatic gain control mechanism

based on histogram equalisation, that is in transforming coe�cients

in terms of z-scores zi (ai ) = P(· > ai ). �e cumulative distribution zi
for each coe�cient of the sparse vector is calculated using Hebbian

learning to smooth its evolution during learning. At the coding level,

this z-score function is incorporated in the matching step of the

matching pursuit algorithm, to modulate the choice of the most as

that with the maximal z-score: i∗ = Argmaxizi (ai ). �e rest of the

algorithm is le� unchanged.

We compared qualitatively the set Φ of receptive �lters generated

by the proposed algorithm when the homeostasis is �rst turned-

o� and then enabled (see Fig. 1). A more quantitative study of

the coding is shown by comparing selection distribution of sparse

coe�cients when the homeostasis mechanism is turned on (see Fig. 2).

We demonstrate that forcing the learning activity to be uniformly

spread among all receptive �elds results in a faster convergence of the

representation error, and in an increase of the Shanon entropy. Finally,

an interesting perspective is to apply the homeostatic regulation

algorithm in a classical fully connected deep-learning neural network

and applied on the MNIST recognition task. By using the sparse

coe�cients as the input layer of the network, we can compare the

performance obtained with and without the homeostatic mechanism.

Preliminary results show that the improvement in e�ciency is more

acute when using sparse representations (5 out of 324 coe�cients).
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Figure 1. Role of homeostasis in learning sparse representations: We

show the results of Sparse Hebbian Learning using two di�erent homeostasis

algorithms at convergence (20000 learning steps). 324 �lters of the same

size as the image patches (16 × 16) are presented in a matrix (separated by

a white border). Note that their position in the matrix is arbitrary as in

ICA. (A) When switching o� the cooperative homeostasis during learning,

the corresponding Sparse Hebbian Learning algorithm converges to a set of

�lters that contains some less localized �lters and some high-frequency Gabor

functions that correspond to more “textural” features. One may wonder if

these �lters are ine�cient and capturing noise or if they rather correspond

to independent features of natural images in the LGM model. (B) Results

with the same coding and learning algorithm but by enabling homeostasis.
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Figure 2. �antitative role of homeostasis in sparse coding: We show

the results of Sparse Coding using the two di�erent homeostasis algorithms

using surrogate data where each �lter was equiprobable but for which we

manipulated the �rst half of the coe�cients to be arti�cially twice as big.

(A) Such a situation replicates a situation arising during learning when a

sub-group of �lters is more active, e. g. because it learned more salient

features. Here, we show the probability of the selection of the di�erent �lters

(normalised to an average of 1) which shows a bias of the standard Matching

Pursuit to select more o�en �lters whose activity is higher. (B) Non-linear

homeostatic functions learned using Hebbian learning. �ese functions were

initialised as the cumulative distribution function of uniform random variables.

�en they are used to modify choices in the Matching step of the Matching

Pursuit algorithm. Progressively, the non-linear functions converge to the

(hidden) cumulative distributions of the coe�cients of the surrogate, clearly

showing the group of �lters with twice a big coe�cients. (C) At convergence,

the probability of choosing any �lter is uniform. As a result, entropy is

maximal, a property which is essential for the optimal representation of

signals in distributed networks such as the brain.
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