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Abstract—Compressed sensing (CS) is a novel technique that
allows for stable reconstruction with sampling rate lower than
Nyquist rate if the unknown vector is sparse. In many practical
applications compressed sensing (CS) measurements are first
scalar quantized and later corrupted in different ways. Recon-
struction by convetional techniques on such highly distorted
measurements will result in poor accuracy. To solve this problem,
we use the well known generalized approximate message passing
(GAMP) algorithm and tailor it for quantized CS measurements
corrupted with noise. We provide the necessary expressions
for the nonlinear updates for different noise models, namely
symmetric discrete memoryless channel (SDMC) and additive
white Gaussian noise (AWGN) channel. Numerical results show
superiority of the GAMP algorithm compared to conventional
reconstruction algorithms from the literature in both SDMC and
AWGN channels.

Index Terms—Generalized approximate message passing,
quantization, Bernoulli-Gaussian mixture, compressed sensing

I. INTRODUCTION

In compressed sensing (CS) we take M linear measurements
yi of an N -dimensional K-sparse vector1 x. Collecting the M
(possibly noisy) measurements into the vector y, we get

y = Ax (+w) , (1)

where A ∈ RM×N is the measurement matrix with M <
N , and w is the noise vector. Even though (1) produces an
underdetermined set of linear equations, compressed sensing
allows for stable reconstruction if the measurement matrix A
satisfies the Restricted Isometry Property (RIP) [1], [2].

In practice, CS measurements need to be quantized for
storage or further digital processing. Quantization inherently
introduces additional measurement noise, and a special atten-
tion was drawn to combating it’s negative effects. Two main
approaches are the design of the quantization scheme and the
design of the sparse reconstruction algorithm.

If the computational power is not a major restriction,
one could apply an Analysis-by-Synthesis (AbS) quantization
scheme for CS measurements, where both the codebook and
reconstruction algorithm are kept fixed. For a given y, the
neighbourhood of the directly quantized y is explored in
hope of finding a better representation of y with the respect
to the codebook and the reconstruction algorithm [3]. Using
Bayesian approximate message passing (BAMP) algorithm as
the reconstruction algorithm, a significant gain in terms of
mean squared error (MSE) could be obtained compared to

1A K-sparse vector has at most K nonzero components

classical reconstruction algorithms if the correct prior for x is
chosen [4].

Among other algorithms for CS, the generalized approx-
imate message passing (GAMP) [5] algorithm is of partic-
ular interest, since it allows to incorporate any knowledge
about measurement process as long as it can be written
in terms of conditional pdf. It approximates E{x|y} using
a computationally efficient iterative procedure. The GAMP
algorithm for quantized (noiseless) CS was investigated in [6],
where the authors show it’s superiority against linear minimum
mean square error (MMSE) and maximum a posteriori (MAP)
reconstruction methods.

A significant disadvantage of the previous work is not
investigating the influence of the measurement noise on the
MSE. The noise itself may appear for many reasons, including
faulty memory, thermal noise at the quantizer, etc.. Another
example is transmission of the quantized measurements over a
communication channel, in which case the appropriate model
is the additive white Gaussian noise (AWGN) channel.

The aim of the paper is to extend the work of [6] and
account for different types of channels when designing the
corresponding high rate GAMP algorithm.

II. MEASUREMENT MODEL

Fig. 1 shows the corresponding transmission chain in the
case of the AWGN channel. There, the measurement vector y
can be compactly expressed as

y = Q(Ax) +w . (2)

In the case of a symmetric discrete memoryless channel
(SDMC), each component yi takes the value Q(Ai,∗x) with
probabilty 1 − pe or a value from the set I \Q(Ai,∗x) with
probability pe/(2

R − 1), where I is the codebook.

III. RESULTS

In the case of an AWGN channel, numerical results pre-
sented in Fig. 2 show superior performance of this algorithm
in terms of the MSE compared to other algorithms from the
literature. The gain can be as large as 10dB for a specific set
of parameters. Fig. 3 shows a strong ability of the GAMP
algorithm to cope with the symbol errors that occur in a
SDMC. The curves in Fig. 4 show that unlike other algo-
rithms, the GAMP algorithm makes use of additional bits per
measurement.
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Fig. 1. The signal processing chain. The unknown K sparse vector x ∈ RN is multiplied with a measurement matrix A ∈ RM×N to obtain a vector
z ∈ RM of CS measurements. Each component of y∗ represents the quantized version of the respective component in z. Symbols from y∗ are sent through
an AWGN channel to obtain the vector of received measurements y.
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Fig. 2. MSE against SNR for different K in an AWGN channel. GAMP*
denotes the GAMP algorithm for noiseless channel model. Parameters R = 2,
M = 512, N = 512.
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Fig. 3. MSE against the probability of the transmission error pe for different
K in a symmetric channel. Parameters R = 4, M = 512, and N = 512.
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Fig. 4. MSE against R for different K in a symmetric channel. Parameters
pe = 0.05, M = 512, and N = 512.
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