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Abstract—Fourier Transform Interferometry (FTI) is a Hyperspectral
(HS) imaging technique that is specially desirable in high spectral
resolution applications, such as spectral microscopy in biology. The
current resolution limit of FTI is actually due to the durability of
biological elements when exposed to illuminating light. We propose
two variants of the FTI imager, i.e., coded illumination-FTI and coded
aperture-FTI, that efficiently allocate the illumination distribution with
a variable density sampling strategy, so that the exposure time of the
biological specimen is minimized while spectral resolution is preserved.
We derive a theoretical analysis for both proposed methods. Our results
are supported by several experimental simulations.

I. INTRODUCTION

Among a plethora of different hyperspectral (HS) image acquisition
techniques, Fourier Transform Interferometry (FTI) has received a
renewed interest for its high spectral resolution capability; a key
criterion for, e.g., biomedical fluorescence spectroscopy [1]. FTI
consists in a Michelson interferometer where one mirror of its two
arms is moved to modify the Optical Path Difference ξ ∈ R (OPD)
of the system (see Fig. 1 for details). For each OPD ξ and each pixel
location (x, y) ∈ R2 of an imaging sensor, an interferometric signal
is then recorded in a volume Y(ξ;x, y). Physical optics then shows
that Y is the Fourier transform, with respect to wavenumber ν, of the
HS image X (ν;x, y) [2], i.e., ξ and ν are dual parameters. From the
Shannon-Nyquist theorem, for a fixed OPD sampling period ∆ξ and
interval Nξ∆ξ (with Nξ samples), an HS image with wavenumber
resolution 2π/(Nξ∆ξ) and range π/∆ξ can be reached.

In FTI, the total illumination imposed on the biological spec-
imen is proportional to Nξ for a constant light source. Since
over-exposed biological elements suffer photochemical changes, i.e.,
photo-bleaching [1], the number of FTI measurements needs to be
minimized while keeping good HS image quality.

In this paper, we propose two schemes ensuring that the desired
resolution is preserved while the exposure time (and with it photo-
bleaching) is significantly reduced. Both schemes amount to an
incomplete set of FTI measurements. Recovering a high resolution
HS image from such under-sampled data is demanding: conventional
methods, e.g., minimum energy solution, produce poor quality im-
ages, while we show how the framework of compressive sensing
[3, 4] and the notion of variable density sampling (VDS) [5] yields
conspicuous quality improvements.

II. PROPOSED METHODS

We study FTI in a simplified setting where the HS image is a
matrix X ∈ RNξ×Np approximating X over Np pixels and Nξ OPD
samples. In this context, we analyze two different sensing scenarios
in which a measurement vector y ∈ CM is observed by:

y = ΦΩx+ n, ΦΩ := RΩΦ = RΩ(INp ⊗ FNξ ), (1)

where x ∈ RN is the vectorization of X (with N = NξNp), RΩ ∈
{0, 1}M×N is the operator extracting the M = |Ω| rows of a matrix
indexed in Ω ⊂ [N ] := {1, · · · , N}, FNξ ∈ CNξ×Nξ is the DFT
matrix, INp ∈ RNp×Np is the identity matrix, n ∈ RM is an additive
measurement noise, and ⊗ is the Kronecker product.

(i) Coded Illumination-FTI (CI-FTI): In CI-FTI we activate the
light source during Mξ � Nξ time slots1, as shown in Fig. 2 (top).
In this case y is denoted by yCI and Ω is separable in the following

1This accords with subsampling mirror positions in [6].

sense: RΩ(INp ⊗ FNξ ) = INp ⊗RΩξFNξ with Ωξ ⊂ [Nξ] that
corresponds to the indices of active OPDs (i.e., time slots).
(ii) Coded Aperture-FTI (CA-FTI): In this approach, the illumina-
tion is coded so that, at each OPD sample only a group of spatial
locations of the specimen are exposed. This can be done by using a
coded aperture pattern or a spatial light modulator [7, 8], as shown in
Fig. 2 (bottom). In this case, y = yCA and Ω is no more separable.

III. MAIN RESULTS

Our main results leverage [5] for both sensing schemes in order to
determine an optimal VDS of [N ], i.e., an optimal probability mass
function (pmf) p(i) := P[S = i] of a random variable (r.v.) S ∈ [N ]
such that Ω = {Ω1, · · · ,ΩM} ⊂ [N ] with Ωi ∼iid S. A stable and
robust HS recovery is then reached by solving

x̂ = arg minu∈RN ‖ΨTu‖1 s.t. ‖D(y −ΦΩu)‖2 ≤ ε
√
M, (2)

where Ψ ∈ RN×N is an (analysis) sparsity basis and D ∈ RM×M is
a diagonal matrix such that Dii = 1/p(Ωi)

1/2 [5]. Notice that in CI-
FTI, from the separability of Ω, D := INp ⊗Dξ where (Dξ)jj =

1/pξ(Ω
ξ
j)

1/2 for some pmf pξ over [Nξ].
The importance of this VDS scheme introduced in [5] is twofold.

First, VDS lifts the sample complexity barrier met by uniform density
sampling (UDS) where p is constant. Second, the resulting matrix
M−

1
2DΦΩΨ satisfies with high probability the restricted isometry

property resulting in uniform signal recovery guarantee [5, 9]. In
fact, given some θ = θ(Φ,Ψ) > 0, for UDS and VDS, we must
have M = O(θ2K log3(K) log(N)) in order to reconstruct K-
sparse signals via (2). For UDS, θ :=

√
N maxij |(ΦΨ)ij | is the

mutual coherence between Φ and Ψ, with θ ≈
√
N and M ≈ N

for the Fourier-Haar system. The VDS proposed in [5] links Ω to
the non-constant pmf p(i) = κ2

i /‖κ‖22 with the local coherence
κi := maxj |ΦΨ|ij , and θ = ‖κ‖2. Computation of κ for the
Fourier-Haar system gives M = O(K log3(K) log2(N)) and p(i)
inversely proportional to the OPD magnitude.

In (2), in accordance with CA/CI-FTI adjusted to this pmf, we thus
follow a VDS scheme and decide to promote a 3D sparsity model
with respect to Ψ := Ψ2D⊗Ψ1D, where Ψ2D and Ψ1D are the 2D and
1D Haar wavelet bases with respect to the spatial and the spectral
domain, respectively. This allows for an efficient representation of
both the spatial and spectral variations of a biological sample mixed
several fluorochromes (Fig. 3).

Correspondingly, using a VDS-driven FTI, we show first
that in CI-FTI HS images are recovered from Mξ =
O(K̄ log3(K̄) log(N)) time slots, i.e., NpMξ measurements, where
K̄ = maxi ‖(Ψ1DXΨT

2D):,i‖0 ≤ Nξ is the worst column (or
spectral) sparsity of the HS image. Second, for CA-FTI, we need
M = O(K log3(K) log2(N)) measurements with K the total
sparsity of the HS image in Ψ.

Therefore, while the two sensing schemes allow for compressive
FTI, we can expect that K ≤ NpK̄ for biological samples where
the pixels that display complex spectral signatures are supported by
a minority of spatial wavelet coefficients. Therefore CA-FTI should
then require a smaller number of measurements, and thus a smaller
light exposure, than CI-FTI for successful HS image reconstructions,
as confirmed in the synthetic example of Fig. 4. The realization of
an actual CI/CA-FTI device (with possible sensing discrepancies e.g.,
Poisson noise) is ongoing.



Fig. 1: FTI operating principles. The HS input denoted by X corresponds
here to the optical HS output of a fluorescence microscope, i.e., the magnified
hyperspectral image of the sample. The light beam coming from the sample is
divided into equal intensity beam by the splitter. The two beams are reflected
back by the respective mirrors. Besides, the phase shift between two beams,
termed as Optical Path Difference (OPD) ξ, changes with respect to the
position of the moving mirror. The two beams interfere after being recombined
by the beam-splitter. The resulting beam is later recorded (in intensity) by
an imaging sensor, which captures one image with Np pixels per ξ, hence
sampling Y . In classical FTI, an inverse Fourier transform applied on this
recording gives an estimate X̂ ≈ X . For simplicity of the schematic, all
imaging optics are also omitted.

Fig. 2: Illustration of (top) CI-FTI and (bottom) CA-FTI with, for both cases,
the corresponding probability mass function p adjusting the VDS.
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Fig. 3: A synthetic ground truth HS volume is generated by mixing an RGB
image (top left), i.e., taken from [10], with the known spectral signatures of
three actual fluorescent dyes (top right). (Bottom) Three spatial maps.
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Fig. 4: Reconstruction performance of Minimum Energy (ME) (i.e., ap-
plying the pseudo-inverse of ΦΩ) and Compressive Sensing (CS) frame-
works for CA-FTI and CI-FTI. The results are averaged over 10 tri-
als (i.e., over the random selection of Ω). Noise level is set such that
10 log

(
‖DΦΩx‖22/‖Dn‖22

)
= 10 dB. As explained in the text (and also

by the `2 − `1 instance optimality of (2) [5]) CA-FTI needs less number of
samples than CI-FTI. Moreover, regardless of measurement ratio ME solution
results in poor quality images.

(a) CS, CA-FTI SNR = 25.17 dB (b) CS, CI-FTI SNR = 19.76 dB

(c) ME, CA-FTI SNR = 11.11 dB

Fig. 6

(22,32)

(d) ME, CI-FTI SNR = 14.27 dB

Fig. 5: An example of the reconstructed HS image from 10% of the total
measurements (illumination). The quality of the reconstruction is obvious
both visually, with respect to Fig. 3(bottom), and quantitatively; although,
our objective is to provide high spectral resolution HS images. The ability of
proposed methods in preserving the spectral resolution is shown in Fig. 6, for
the point indicated by a white square.
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Fig. 6: The spectrum of the reconstructed HS image in Fig. 5 at pixel location
(22, 32). The sidebands in the ME reconstruction considerably degrades the
accuracy of the HS acquisition; while in CS reconstruction the shape of the
spectrum is well-preserved.
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