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Abstract—Understanding chemical reaction networks in systems biol-
ogy is an important dicipline, as it provide the means for quantifying
downstream effects of chemical or medical interventions. Thus identifying
these systems from noisy data is a major challenge with far reaching
applications — such as to the inference of phosphoprotein interaction
networks as in [4].

For mass action Kinetics the system structure — the network - is
encoded via sparsity in a parameter vector, whose dimension increases
rapidly with the number of species. We have developed an algorithm
for simultaneous system identification and parameter estimation via
minimisation of a penalised loss function. The global minimiser is difficult
to find, and focus has been on computational aspects, as well as variance-
reduction techniques.

Several techniques are combined to cope with the computational and
statistical aspects. The resulting method is implemented in an R-package,
which provides sparse estimates of systems with up to 10° reactions.

I. INTRODUCTION

Consider d chemical components (i.e., NaCl, H2O, phosphopro-
teins, etc.), denoted z = (ml)le, whose abundances are governed by
p chemical reactions:
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where A = (a;,1);, and B = (b;;);,; are non-negative stoichiometric
coefficients and k = (k;); are non-negative reaction rates. According
to the law of mass action, the vector x of abundances, can be
approximated by solving the ordinary differential equation (ODE):

t
z(t, k) = zo +/ (B — A)"diag(z(s, k)*)k ds, t€ R, (2)
0

where o € R? is the initial abundance and z* = (1_[7:1 z, 7"

We observe the z-process at n time points, y(t;) = x(t;, k*¥)+&,
with (&)j=, i.i.d. noise and s(7) € {1, ..., S} denoting experimental
condition (e.g., knockdowns, stimuli, etc.), where B0 = ko Cs(i)
(Hadamard product of baseline rate and non-negative scales). We
infer the reaction network from a large list of possible reactions by
enforcing sparsity in the estimation of k. The penalised squared error
loss function is considered:
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3)
with pen a sparsity enforcing penalty, e.g., elastic net, SCAD, MCP,
and w = (w;,1)i,1, v = (v;); are observational and penalty weights.

II. COMPUTATIONAL ASPECTS

Minimising (3) is a high dimensional problem, as the number
of possible reactions, p, grows quickly in the number of chemical
species, d. For example there are p = d*(d — 1) distinct simple
enzymatic reactions of the form

Ty + T, = Ty + Ty, )
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Moreover, evaluating the derivative of (3) requires solving another
ODE system taking values in R¥4+P) _called the sensitivity equations
(see [7]). Though numerical solvers of ODEs are fundamentally
sequential in nature the sensitivity equations can be solved in parallel.
Yet these evaluations should be kept at a minimum.

We propose combining a proximal-gradient based method (see [1],
[8]) with occasional screening for strong coordinates to reduce the
number of full gradient evaluations. Furthermore, good initialisations
of k are provided by integral matching (see [6] for details). Figure
3 shows the solution recovered from a small simulated mass action
kinetics system.

III. VARIANCE REDUCTION AND RE-WEIGHTING

The loss function (3) is likely to have a vast number of local
minima, primarily due to nonlinearity of z. Consequently, extra
variance of the minimal loss estimator is introduced. In order to
reduce this, penalty regularization will not alone suffice.

Additionally, if the reactions operate on different scales, appro-
priate adjustments of (v;); and (cg(;)): are required. For linear
least squares problems, this is usually handled by standardising the
columns of the design, but no immediate equivalent exists for min-
imising (3). However, the preliminary integral matching procedure
replaces (3) with a (squared) surrogate loss function using non-
parametric estimates of the x-process (similar to methods of [2], [3]).
Hence classic tools for standardising and reweighting ([9]) the system
through w, v and (c4(;)): are applicable.

Moreover, whole families of non-parametric estimators of x are
applied to give multiple initialisations to minimising (3), which
through the continuation principle produces solution paths over the
tuning parameter \. Collectively the solutions paths reduce the issue
of multiple minima and, through model averaging procedures and/or
stability selection, also reduce the variance of the final estimator.

IV. RESULTS

The method summarised above is implemented in an R-package,
which can handle high-dimensional reaction systems (e.g., systems
on the form (1) with up to p = 10%) using either elastic net, SCAD
and MCP penalties. The package centers around two main features:
MAKER (Mass Action Kinetics Estimation with Regularization)
and AIM (Adaptive Integral Matching). AIM contains the tools
for automatically producing initial estimates, adapting weights and
scales. These are then pipelined to MAKER, which runs the proximal
gradient algorithm with screenings. See Figures 1 and 2 for overviews
of the algorithms.
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Fig. 1. AIM: Preliminary processesing of data to produce automatic initial
parameter values and adapting scales and weights to those.
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Fig. 2. Flowchart of proximal gradient method mixed with occasional
screening used in MAKER.
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Fig. 3. Simulated mass action kinetics of enzymatic reactions of the form (4)
with d = 5 and p = 100. Inferred network (green = TP, red = FP, orange =
FN). Fully drawn lines are true ODE solutions, dashed lines are least squares
estimates using inferred network.
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