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Abstract—The matching pursuit algorithm and its variants are among
the most commonly used methods for greedy optimization. In this paper,
we present the first explicit convergence rates of matching pursuit
methods in an optimization sense, for general sets of atoms. We present
sublinear O(1/t) convergence on general smooth objectives, and linear
convergence on strongly convex objectives. Our algorithm variants and
rates do not need any incoherence or sparsity assumptions. Direct
applications of the presented algorithms are structured matrix and tensor
factorization problems.

I. INTRODUCTION

During the past decade, greedy algorithms have attracted significant
attention and have led to many success stories for optimization in
machine learning and signal processing (e.g. compressed sensing).
Among the most prominent representatives of greedy algorithms
are matching pursuit (MP) algorithms [2], including the orthogonal
matching pursuit (OMP) [1], [3]. They are used to minimize an
objective over the linear span of a given set of atoms, or dictionary
elements. The setting of optimization over linear combinations of
atoms has served as a very useful template in many applications, since
the choice of the atom set conveniently allows to encode the desired
structure for the application at hand. Apart from many applications
based on sparse vectors, the use of rank-1 atoms gives rise to structured
matrix and tensor factorizations, see e.g. [4], [5], [6].

II. NORM CORRECTIVE MATCHING PURSUIT

Let f : H→R be convex and L-smooth function and let A be a
bounded subset (atom set) of a Hilbert space H. We consider problems
of the form

min
x∈lin(A)

f(x). (1)

To solve (1), we present the Norm-Corrective Generalized Matching
Pursuit (GMP) in Algorithm 1 which is based on the quadratic upper
bound gxt(x) = f(xt) + 〈∇f(xt),x− xt〉+ L

2
‖x− xt‖2 and can

be seen as an extension of MP and OMP to smooth functions f .

Algorithm 1 Norm-Corrective Generalized Matching Pursuit (GMP)

1: init x0 ∈ lin(A), and S := {x0}
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: S := S ∪ {zt}
5: Let b := xt − 1

L
∇f(xt)

6: Variant 0: Update xt+1 := argmin
z:=xt+γzt

γ∈R

‖z− b‖22

Variant 1: Update xt+1 := argmin
z∈lin(S)

‖z− b‖22
7: Optional: Correction of some/all atoms z0...t
8: end for

Here, the updates in line 6 are again either over the most recently
selected atom (Variant 0) or over all perviously selected atoms
(Variant 1). Note that the update step in line 6 of Algorithm 1 Variant 0
(line-search) has the closed-form solution γ = − 〈xt−b,zt〉

‖zt‖2
. In each

iteration, GMP queries a linear minimization oracle (LMO) which
solves the optimization problem

LMOD(y) := argmin
z∈D

〈y, z〉 (2)

for given y ∈ H and D ⊂ H. As computing an exact solution (2),
depending on D, is often hard in practice, it is desirable to rely on
an approximate LMO that returns an approximate minimizer z̃ of (2)
instead of the true solution zt such that ∃δ s.t. 〈d, z̃〉 ≤ δ〈d, z〉.
We write x? ∈ argminx∈lin(A) f(x) for an optimal solution of (1).
Our rates crucially depend on a (possibly loose) upper bound on the
atomic norm of the solution and iterates: Let ρ > 0 s.t.

ρ ≥ max {‖x?‖A, ‖x0‖A, . . . , ‖xT ‖A} (3)

where ‖x‖A := inf{c > 0: x ∈ c · conv(A)} is the atomic norm
of x. If x? is not unique, we consider it to be of largest atomic norm.

Theorem 1. Let A ⊂ H be a bounded and symmetric set and let f
be L-smooth w.r.t. a given norm ‖.‖, over ρ conv(A) with ρ < ∞.
Then, Norm-Corrective Matching Pursuit (Algorithm 1), converges
for t ≥ 0 as

f(xt)− f(x?) ≤
4
(
2
δ
Lρ2 radius‖.‖(A)2 + ε0

)
δt+ 4

where ε0 := f(x0) − f(x?) is the initial error in objective, and
δ ∈ (0, 1] is the relative accuracy of the employed approx. LMO.

Definition 2. Given a bounded set A, we define its minimal intrinsic
directional width as

mDW(A) := min
d∈lin(A)

d 6=0

max
z∈A
〈 d
‖d‖ , z〉 .

The quantity mDW(A) is meaningful for both undercomplete and
overcomplete atom sets, and plays a similar role as the coherence in
coherence-based convergence analysis of MPs.

Theorem 3. Let A ⊂ H be a bounded set such that mDW(A) > 0,
and let f be L-smooth and µ-strongly convex w.r.t. the given norm ‖.‖
over ρ conv(A). Then, for t ≥ 0, the suboptimality of the iterates of
Algorithm 1 decays exponentially as

εt+1 ≤
(
1− δ2 µmDW(A)2

L radius‖.‖(A)2

)
εt,

where εt := f(xt) − f(x?) is the suboptimality at step t, and
δ ∈ (0, 1] is the relative accuracy of the employed approx. LMO.

We numerically investigate the tightness of the linear rate and
illustrate the impact of the mDW(A) on the empirical rate of
Algorithm 1 (Variant 0, with exact LMO) in Figure 1.

Additional Results. In a longer version of this paper, we addition-
ally provide affine invariant variants of both the algorithms and their
convergence analysis, as well as theoretical lower bounds, and a more
detailed discussion of connections with Frank-Wolfe methods, and
contrast our new complexity constants to existing coherence notions.
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Fig. 1: Minimum, maximum and average ratio of the theoretical rate
(Theorem 3) and empirical rate over 20 runs from random starting
point in conv(A). We minimize the function f(x) = ‖x? − x‖2

over the set A := {Aθ ∪ −Aθ} where Aθ :=
{(

1
0

)
,
(
cos θ
sin θ

)}
with

θ ∈ (0, π/2] and x? := (−1, 1)>.
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