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I. INTRODUCTION

The union of subspaces (UoS) model, in which data vectors lie near
one of several subspaces, has been used actively in the computer vision
community [1], [2]. Subspace clustering algorithms such as Sparse
Subspace Clustering (SSC) [3] achieve state-of-the-art unsupervised
clustering performance, but in many cases supervision is possible,
e.g., a person could answer whether two images are of the same
person or whether two digits are the same.

Pairwise-constrained clustering (PCC) algorithms use supervision in
the form of must-link and cannot-link constraints on pairs of samples
in the dataset. Active query selection methods, in which sample pairs
are intelligently selected based on a number of heuristics, have been
shown to make best use of supervised input. Active methods such
as Uncertainty Reducing Active Spectral Clustering (URASC) [4]
significantly reduce clustering error with a modest number of pairwise
constraints, but do not take advantage of any structure in the data.

We introduce a method of active query selection that leverages the
known UoS structure to improve pairwise-constrained clustering. We
describe two ways to measure the margin of a point in the subspace
clustering context using the subspace residual as well as margin
based on the affinity matrix. For margin based on subspace residual,
we prove that points lying near the intersection of subspaces are
points with low margin under a common noise scenario. We present
a novel PCC algorithm, called SUPERPAC (SUbsPace clustERing
with Pairwise Active Constraints), that utilizes the subspace estimates
provided by algorithms such as SSC [3] to reduce clustering error as
quickly as possible.

II. UOS-BASED PAIRWISE-CONSTRAINED CLUSTERING

Let X =
{
xi ∈ RD

}N
i=1

be a set of data points lying on a union
of K subspaces {Sk}Kk=1, each having dimension d. Denote the true
clustering of a point x ∈ X by C(x). Let the output of a clustering
algorithm be an affinity/similarity matrix A and a set of label estimates{
Ĉ(xi)

}N

i=1
. Our algorithm for PCC consists of an initialization and

three main steps. To initialize, we build a set of certain sets Z using
an EXPLORE-like algorithm similar to that of [5]. A test point is then
obtained using either the min-margin criterion for subspaces [6] or
a notion of margin based on the affinity matrix, both of which we
define below. The test point is queried against representatives from the
certain sets until a must-link is found; otherwise test point becomes its
own certain set. Finally, the certain sets are used to impute values in
the affinity matrix, and spectral clustering is performed. These steps
(excluding the initialization) are then repeated until the maximum
number of pairwise comparisons has been obtained. A diagram of
our algorithm is given in Fig. 1. Pseudocode is given in Fig. 2, where
UOS-EXPLORE is an initialization algorithm described in [7].

III. SAMPLE SELECTION VIA MARGIN

The key step in our algorithm is choosing a test point that is likely
to be misclassified. Min-margin points have been studied extensively

in active learning; intuitively, these are points that lie near the decision
boundary of the current classifier. We now describe two notions of
margin—one based on subspace distances and one based on the input
affinity matrix.

For a subspace Sk with orthonormal basis Uk, let the distance
of a point to that subspace be dist(x,Sk) = miny∈Sk ‖x − y‖2 =∥∥x− UkU

T
k x
∥∥
2
. Let k∗ = arg mink∈[K] dist(x,Sk) be the index

of the closest subspace. Then the subspace margin of a point x ∈ X
is defined as [6]

µ1(x) = max
j 6=k∗,j∈[K]

dist(x, Sk∗)

dist(x, Sj)
. (1)

We denote our algorithm with this definition of margin by SUPERPAC-
R (residual). The point of minimum margin is then defined as
arg maxx∈X µ1(x). Note that 0 ≤ µ1(x) ≤ 1, where the larger
µ1(x) the closer x is to the decision boundary. The following theorem
shows that points lying near the intersection of subspaces are included
among those of minimum margin with high probability.

Theorem 1. Consider two d-dimensional subspaces S1 and S2. Let
y = x + n, where x ∈ S1 and n ∼ N (0, σ2ID). Define µ(y) =
dist(y,S1)
dist(y,S2)

. Then
(1− ε)

√
σ2(D − d)

(1 + ε)
√
σ2(D − d) + dist(x,S2)2

≤ µ(y)

and

µ(y) ≤
(1 + ε)

√
σ2(D − d)

(1− ε)
√
σ2(D − d) + dist(x,S2)2

,

with probability at least 1 − 4e−cε2(D−d), where c is an absolute
constant.

Thm. 1 can be interpreted as follows: suppose we have two noisy
points y1, y2 that were drawn from a subspace, i.e., yi = xi + ni

where xi ∈ S1, i = 1, 2. Then the point closer to the intersection
with another subspace S2 will have smaller margin as long as the
gap between dist(x1,S2)2 and dist(x2,S2)2 grows linearly with the
noise variance σ2.

We also consider a version of margin calculated from the entries
of the affinity matrix itself, denoted by SUPERPAC-A (affinity).
Given an affinity matrix A, we estimate the probability that a point
xi is in subspace k as P(k|xi) =

∑
j:Ĉ(xj)=k Aij/

∑N
j=1Aij . Let

l∗ = arg maxl∈[K] P(l|x). Define the affinity margin of a point x as

µ2(x) = max
j 6=l∗,j∈[K]

P(j|x)
P(l∗|x) . (2)

The point of minimum margin again follows as arg maxx∈X µ2(x).
We show the error as a function of number of pairwise constraints

in Figs. 2-4. Our method achieves superior performance compared
to the state-of-the-art [4] and random query selection. Further, it is
agnostic to the input algorithm chosen, meaning that our approach
remains applicable even as unsupervised algorithms are improved.
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Fig. 1: Diagram of SUPERPAC algorithm for pairwise constrained clustering.

Algorithm 1 SUPERPAC

1: Input: X = {x1, x2, . . . , xN}: data, K: number of clusters, d:
subspace dimension, A: affinity matrix, maxQueries: maximum
number of pairwise comparisons

2: Estimate Labels: Ĉ ← SPECTRALCLUSTERING(A,K)
3: Initialize Certain Sets: Initialize Z = {Z1, · · · , Znc} and

numQueries via UOS-EXPLORE

4: while numQueries < maxQueries do
5: Obtain Test Point: select xT ← arg maxx∈X µ1(x) or

arg maxx∈X µ2(x)
6: Assign xT to Certain Set:

Sort {Z1, · · · , Znc} in order of most likely must-link
(via subspace residual for xT ), query xT against repre-
sentatives from Zk until must-link constraint is found or
k = nc. If no must-link constraint is found, set Z ←
{Z1, · · · , Znc , {xT }} and increment nc.

8: Impute Constraints: Set Aij = Aji = 1 for (xi, xj) in the
same certain set and Aij = Aji = 0 for (xi, xj) in different
certain sets (do not impute for points absent from certain sets)

9: Estimate Labels: Ĉ ← SPECTRALCLUSTERING(A,K)
10: end while

Fig. 2: SUPERPAC Algorithm
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Fig. 3: Misclassification rate versus number of pairwise comparisons
for extended Yale face database B with K = 38 subjects. Input affinity
matrix is taken from SSC-OMP.
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Fig. 4: Misclassification rate versus number of pairwise comparisons
for MNIST handwritten digits with K = 10 and Nk = 100 points
per subspace. Input affinity matrix is taken from SSC.
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Fig. 5: Misclassification rate versus number of pairwise comparisons
for COIL-100 (K = 100)) database. Input affinity matrix is taken
from EnSC.
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