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A. Introduction

The problem of recovering a low-rank matrix from incomplete
linear measurements has gained considerable attention in the last few
years due to the omnipresence of low-rank models in different areas
of science and applied mathematics [1]. The problem of identifying
and reconstructing a low-rank matrix from only few given entries is
called matrix completion and is a well-known instance of the low-
rank matrix recovery problem.

Although the problem is NP-hard in general, several efficient algo-
rithms have been proposed that allow for provable recovery for many
classes of matrices, given many measurement operators. The most
popular techniques include nuclear norm minimization (NNM) [2],
[3], which solves a convex relaxation of rank minimization problem,
and alternating minimization [4]. For NNM, recovery guarantees
have been shown for a number of measurements on the order of the
information theoretical lower bound r(d1 4+ d2 — r), if r denotes the
rank of a di x dp-matrix [3]. More recently, comparable guarantees
have also been derived for several non-convex algorithmic approaches
[5]-[7], which are often preferred in practice because of their higher
empirical recovery rate and their more efficient implementation.

B. Our Approach

In this spirit, we propose [8] a new Iteratively Reweighted Least
Squares (IRLS) algorithm for the low-rank matrix recovery problem
striving to minimize the non-convex Schatten-p quasi-norm

min | X[ subject to ©(X) =Y (1)

for0 < p < 1, with ® : R%*92 _, R™ being the linear measurement
operator. We call it Harmonic Mean Iteratively Reweighted Least
Squares (HM-IRLS) as its weight matrices can be interpreted as the
harmonic mean of left- and right-sided weight matrices that have been
discussed in [9], [10] for previous IRLS algorithms aiming to solve
the low-rank recovery problem. Unlike [9], [10], our approach uses
the information in both the column and the row space of the iterates,
which are defined for n = 1,2,... as the minimizers of weighted
least squares problems such that

(n+1) _ . 2
X = argmil y cgd; xdz ¢(X)=Y HXveCHgQ(VT/(nH))a

given the harmonic mean weight matrix WD

- - -1
9 [U(n)(z(n))Q—pU(n)* @ V(">(E("))2"’V(")*] . In the

definition of W1, the SVD of X(™ = y™xmy ™ appears,
2™ s a diagonal matrix containing the smoothed singular
values £ (2(M2 4 (M2)2 with the smoothing parameter
™ = min(e(”_l),Zii_l}gH); we further use the convention
A®B =15, ® A+ B®I; and the tensor product ® in the
standard bases. We claim that this choice of the weight matrices
W™ has several favourable properties for non-convexity parameters

p < 1. This is the case as HM-IRLS achieves a better alignment of
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the left-singular and right-singular vectors of the iterates with the
ones of the low-rank matrix to be recovered.

C. Theoretical Results

We extend the theoretical guarantees of previous low-rank IRLS
algorithms, some of which are based on null space properties of
the measurement operator, to HM-IRLS. More precisely, we show
convergence of the sequence of iterates (X (”))neN to stationary
points of the smoothed Schatten-p functional Y™ %1-% (EE?)P
under the linear constraint.

Furthermore, we show that, unlike the related algorithms [9],
[10], HM-IRLS exhibits a local superlinear convergence rate (of
order 2 — p) in case of convergence to a low-rank matrix under
the mentioned assumptions on the measurement operator. For small
Schatten-p parameters p > 0, this means that convergence rate is
almost quadratic.

D. Numerical Experiments

We conducted extensive numerical experiments comparing the
efficiency of HM-IRLS with related algorithms as well as with
algorithms based on different concepts (cf. Fig. 1) in terms of needed
number of measurements for reconstructing matrices of a given rank.
In the experiments, we focussed on the matrix completion setting due
to the popularity of this model, even though our theoretical guarantees
do not apply directly to this model.

We observe that surprisingly, HM-IRLS needs fewer given entries
to complete low rank matrices with high empirical probability than
all the state-of-the-art algorithms we included in our experiments.
Computationally, the most expensive operation of our algorithm is
the solution of a m x m sparse linear system, if m is the number of
given entries. This allows us to recover low-rank matrices up to e.g.
di1 = dz = 1000 on a single machine given very few entries.

Also, we verify the theoretically predicted superlinear convergence
rate in our experiments accurately (cf. Fig. 2), noting that the
proposed algorithm converges often to Frobenius errors as small as
1070 in 10 or 20 iterations, while other iterative algorithms need
hundreds or thousands for comparable errors.

E. Conclusion

We consider HM-IRLS as the presently best extension of [16], as
we achieve their local convergence rate, which is unprecedented for
both IRLS-type and other types of algorithms solving the Schatten-p
minimization problem. Unlike for the algorithm of [16], we observe
that global convergence of HM-IRLS is not lost for small p < 0.5,
even not for p as small as p = 0.01. The numerical experiments
indicate that this behaviour of HM-IRLS is complemented by a
superior performance in terms of the number of measurements needed
for successful recovery compared to state-of-the-art methods.
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Fig. 1: Recovery success rate with varying oversampling factor p for state-of-the-art algorithms

We consider low-rank matrices X, € R% %92 rank(Xo) =

sampling m =

r with di = d2 = 100, r = 8, and take matrix completion measurements,
p - r(di + da — r) entries of Xo. We examine the recovery performance for various types of algorithms such as IRLS

algorithms IRLS-FRW, IRLS-MF [9], [10], Riemannian optimization (Riemann_Opt [11]), alternating minimization (p_MC_AltMin,
ASD and BFGD as in [12]-[14]), and iterative hard thresholding (MatrixALPSII, CGIHT_Matrix [6], [15]). We draw 150 instances of
Xo = UV*, where U € R4*" and V € R™*%2 are random matrices with i.i.d. standard Gaussian entries, and matrix completion sampling
operators ® with oversampling factor p from 0.975 to 2.60, and define successful recovery as a relative Frobenius error of smaller than
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Fig. 2: Logarithmic error plot vs. number of iterations for HM-IRLS
[(a) and (b)] and IRLS-FRW [9] [(c) and (d)] and oversampling
factors p = 2.0 [(a) and (c)] and p = 1.2 [(b) and (d)]

We consider low-rank matrices X € R%1 %92 rank(Xg) = r with d; =
da = 40, r = 10, and take matrix completion measurements, sampling
m = p-r(d1 + dz —r) entries of Xo. We run different variants of IRLS,
namely HM-IRLS and IRLS-FRW [9], to recover X for different the
choices for the paramter p = {0.0001, 0.05,0.1,0.25,0.5,0.65, 0.8, 1.0},
steering the non-convexity of the minimization problem (1).
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