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I. TRANSFORM LEARNING

Transform learning has been introduced and studied in [1],[2], [3]
and [4]. An optimal transform learning for structured and overcom-
plete matrix was proposed in [5]. However, several issues (optimality,
convergence and computational complexity) related to learning an
incoherent, well-conditioned, non-structured and overcomplete spar-
sifing transform still remain open.

Let X ∈ <N×L be a data matrix, having as columns data
samples xi ∈ <N , i ∈ I = {1, 2, ..., L}. Assuming a sparsifing
transform model [1], then the problem formulation for learning the
overcomplete transform matrix A ∈ <M×N , (M > N) has the
following form:

min
A,Y

g(A,Y) = min
A,Y
‖AX−Y‖2F + Ω1(A) + λ1‖Y‖1, (1)

where ‖.‖F and ‖.‖1 denote the Frobenius norm and the l1
norm, respectively. The penalty Ω1(A) is defined as: Ω1(A) =
λ2
2
‖A‖2F + λ3

2
‖AAT − I‖2F −λ4 log | det ATA| and λk are La-

grangian multipliers ∀k ∈ {1, 2, 3, 4}. The first term in (1) is
known as sparsification error [1]. It represents the deviation of
the transformed data from the exact sparse representation in the
transform domain. The log | det (ATA)| and ‖A‖2F are functions
of the singular values of A and together help regularize the condi-
tioning of A. Assuming that the expected coherence µ2 (A) between
the rows am of A (i.e. AT = [a1,a2, ...,aM ]) is defined as:
µ2 (A) = 2

M(M−1)

∑
m1 6=m2

|am1aTm2
|2,∀m1,m2 ∈ {1, 2, ..,M}

then the penalty ‖AAT − I‖2F helps enforce a minimum expected
coherence µ2 (A) and unit one row norm ‖am‖2 = 1. The matrix
Y = [y1,y2, ...,yL] ∈ <M×L has as columns the transformed data
yi, i ∈ I that are constrained to have a small number of non-zeros
by λ1‖yi‖1.

Similarity as in [4], [6] and [7] an alternating algorithm that has two
steps (transform update step and sparse coding step) is proposed to
solve (1) by iteratively updating A and Y. It is important to highlight
that the algorithm proposed in [4] solves the transform update step
using projected conjugate gradient method. The main contribution
in this work is the proposed closed form ε-close solution for the
transform update step that results in a low computational complexity.
Moreover, although an ε-close solution is used in the transform update
step the proposed two step iterative algorithm is convergent [8].

A. Transform estimate

Given the current estimate of Y, the estimate of the transform A is
solution to the following problem (P1) : {Â} = argminA ‖AX−
Y‖2F + Ω1(A). The resulting ε-close solution w.r.t ε-close ap-
proximation g1(A,Y) ≤ g(A,Y) of the term Tr{AXYT } in
(P1) is given by Proposition 1 (where Tr{AXYT } appears from
Tr{AXXTAT − 2AXYT + YYT } = ‖AX−Y‖2F ).

Proposition 1 Given Y ∈ <M×L, ∀X ∈ <N×L and M ≥ N ,
∀λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0, λ4 ≥ 0, let the eigen value decomposition
UXΣ2

XUT
X of XXT + λ1I and the singular value decomposition

UUXXY ΣUXXY VT
UXXY

of UT
XXYT exists, then if and only if

σX(n) > 0, ∀n ∈ {1, 2, 3, ..., N} and λ3 ≥ 0, (P1) has ε-close
solution to the optimal solution of (P1) as:

Â = VUXXY UT
UXXY ΣAΣ−1

X UT
X , (2)

where ΣA is diagonal matrix, ΣA(n, n) = σA(n) ≥ 0, σA(n), ∀i
are solutions to:

min
σA(n)

λ3

σX4
σ4
A(n) +

(
σ2
X(n)− 2λ3

σ2
X(n)

)
σ2
A(n)−

σUXXY (n)

σX(n)
σA(n)− 2λ4 log

σA(n)

σX(n)
,

(3)

and the ε-close solution is ε = Tr{(UUXXY ΣUXXY UT
UXXY

−
ΣUXXY )ΣA Σ−1

X } ≤ 0 close to the optimal solution.

B. Sparse coding

Given the current estimate of the transform A, the sparse coding
problem is formulated as (P2) : Ŷ = argminY ‖AX − Y‖2F +
λ1‖Y‖1. Define Q = AX then the closed form solution to (P2) is
ŷi(m) = qi(m), if |qi(m)| > λ1, and ŷi(m) = 0, otherwise, ∀i ∈ I.

Lemma 1: Given data X and a pair of initial transform and
sparse data {A0,Y0}, let {Ak,Yk} denote the iterative sequence
generated by the solutions (2) with (3) and the closed form solution of
(P2). Then, the sequence of the objective function values g

(
Ak,Yk

)
is monotone decreasing sequence, satisfying g

(
Ak+1,Yk+1

)
≤

g1(Ak+1,Y) ≤ g
(
Ak+1,Yk

)
≤ g

(
Ak,Yk

)
and converges to

a finite value denoted as g∗ = g∗
(
A0,Y0

)
.

Proof: The proof is given in [8] (a submitted paper for review).

II. EXPERIMENTAL RESULTS

This section presents the preliminary results for image denoising
application where the denoising problem formulation is similar to the
one proposed in [4].

Peppers, Cameramen and Barbara at image resolution 256× 256,
256 × 256 and 512 × 512, respectively, are used to evaluate the
potential advantages of the proposed algorithm named (εTOL). We
compare it with the transform learning based on: square matrix (TL-
S) [6], non-structured overcomplete matrix (TL-O) [4], and K-SVD
[7]. The results are shown on Tables 1, 2 and 3.

The properties of the proposed algorithm and the transform A
using the Cameramen image as example are shown on Figure 1. The
learned transforms for all the images have good conditioning numbers
and low expected coherence (Table 1). The average execution time
and the training data requirements are lower than those of the
comparing algorithms. Moreover the run time is 3×, 2× and 9×
faster then TL-S, TL-O and K-SVD, respectively, as shown in Table
2. Further, the number of required parameters is small. Surprisingly,
the number of noisy image patches required for learning is drastically
lower than those of the reference algorithms. At the end as shown
on Table 3 the recovery results are comparable or provide small
improvement with respect to the reference algorithms.
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Fig. 1. The properties of the proposed algorithm and the transform A using the Cameraman image: a) The evolution of the sparsification error of the
proposed algorithm; b) The actual basis vectors ai (rows of A) for the learned transform; c) The matrix AAT where the expected value of the values of
the off diagonal elements represents the mutual coherence µ(A) (the transform was learned on overlapping 8× 8 noisy image blocks, equivalently N = 64,
and M was set to 80).

Peppers Cameramen Barbara
Cn 1.31 1.22 1.28
µ2(A) 0.0023 0.0033 0.0031

TABLE I
THE CONDITIONING NUMBER Cn AND THE EXPECTED COHERENCE µ2(A) OF A.

TL-S TL-O K-SVD εTOL
te[min] 4.6 2.9 9.8 1.15
ldata[%] 25− 100 25− 100 100 3− 15

TABLE II
RUNNING TIME OF THE ALGORITHMS USING MATLAB IMPLEMENTATION DENOTED AS te AND THE PERCENTAGE OF THE TOTAL NUMBER OF TRAINING

DATA USED IN THE LEARNING DENOTED AS ldata .

σ TL-S TL-O K-SVD εTOL

Peppers 10 34.45 34.49 34.2 34.44
20 29.98 30.60 29.82 30.63

Cameramen 10 33.93 33.83 33.72 33.93
20 29.93 29.95 29.82 30.12

Barbara 10 34.45 34.55 34.42 34.60
20 30.53 30.90 30.82 30.91

TABLE III
DENOSING PERFORMANCE IN PSNR, WHERE σ IS THE NOISE STANDARD DEVIATION.
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