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The past few years have seen a surge of interest in nonconvex
reformulations of convex optimizations for efficiency and scalability
reasons [1]–[8]. Compared with the convex formulations, the non-
convex ones typically involve many fewer variables, allowing them
to scale to scenarios with millions of variables. In addition, simple
algorithms [8]–[13] applied to the nonconvex formulations have
surprisingly good performance in practice. A complete understanding
of this phenomenon, particularly the geometrical structures of these
nonconvex optimizations, is still an active research area. Unlike the
simple geometry of convex optimizations where local minimizers are
always global ones, the landscapes of general nonconvex functions
can become as complicated as it could be. Fortunately, for a range
of convex optimizations, particularly matrix completion and sensing
problems, the corresponding nonconvex reformulations have nice
geometric structures that allow local search algorithms to converge
to global optimality [1]–[3], [6], [14], [15]. We extend this line of
investigation by working with a general convex function f(X) and
considering the following two optimizations:

minimize
X∈Rp×p

f(X) subject to X � 0 (P0)

minimize
X∈Rp×q

f(X) + λ‖X‖∗, (P1)

both of which are assumed to admit a low-rank optimizer X? with
rank(X?) = r? [16]. For these problems, standard first-order convex
solvers [17], [18] require performing an eigenvalue (or singularvalue)
decomposition in each iteration, severely limiting their efficiency and
scalability in applications [4], [19]–[27].

OUR APPROACH: BURER-MONTEIRO STYLE PARAMETERIZATION

Burer and Monteiro [28] proposed to factorize a low-rank variable
X = UUT (for semi-definite matrices) or X = UV T (for general
matrices) where U ∈ Rp×r and V ∈ Rq×r with r � {p, q}.
Moreover, by noting ‖X‖∗ = minimizeX=UV T (‖U‖2F +‖V ‖2F )/2,
we obtain the following nonconvex reparameterizations of (P0)-(P1):

minimize
U∈Rp×r

g(U) =f(UUT ) (F0)

minimize
U∈Rp×r,V ∈Rq×r

g(U, V ) =f(UV T ) + λ(‖U‖2F + ‖V ‖2F )/2 (F1)

Since r � {p, q}, these factored problems (F0)-(F1) involve many
fewer variables.

The past two years have seen renewed interest in the Burer-
Monteiro factorization for solving trace norm regularized inverse
problems [29]–[34]. With technical innovations in analyzing the
nonconvex landscape of the factored objective function, several recent
works have shown that with exact parameterization (i.e., r = r?)
the factored objective function g(U) (or g(U, V )) in (F0)-(F1) has
no spurious local minima or degenerate saddle points [1]–[3], [35],
[36]. An important implication is that local search algorithms such
as gradient descent and its variants are able to converge to the global
optimum with even random initialization [2].

We generalize this line of work by assuming a general objective
function f(X) in (P0)-(P1), not necessarily coming from a matrix
inverse problem. The generality allows us to view the factored

problems (F0)-(F1) as a way to solve the convex optimizations (P0)-
(P1) to the global optimum, rather than a new modeling method.
This perspective, also taken by Burer and Monteiro in their original
work [28], frees us from rederiving the statistical performances of
the factored optimizations (F0)-(F1). Instead, its performance inherits
from that of the convex optimizations (P0)-(P1), whose performance
can be developed using a suite of powerful convex analysis techniques
accumulated from several decades of research. In addition, our
general analysis technique also sheds light on the connection between
the geometries of the convex programs (P0)-(P1) and its nonconvex
counterparts (F0)-(F1).

OUR MAIN RESULT

Our governing assumption on the objective function f(X) is 2r-
restricted well-conditionedness:

mI � ∇2f(X) �MI with M/m ≤ 1.5 if rank(X) ≤ 2r (1)

This assumption is standard in matrix inverse problem [37], [38]. We
show that under this assumption combined with a small condition
number M/m, we have the following theorem:

Theorem 1. Suppose the objective function f(X) is convex and
satisfies (1). Assume X? is an optimal solution of the minimization
(P0) or (P1) with rank(X?) = r?. Set r ≥ r? in (F0)-(F1). Then any
critical point U (or (U, V )) of g in (F0)-(F1) either corresponds to
the global optimizer X? where X? = UUT (or X? = UV T ) or is
a strict saddle point (or a local maximum) of the factored problems
(F0)-(F1), where the Hessian ∇2g has a strictly negative eigenvalue,
i.e., λmin(∇2g(U)) < 0 or λmin(∇2g(U, V )) < 0.

Note that our result covers both over-parameterization where r >
r? and exact parameterization where r = r?. The geometric property
established in the theorem ensures that many iterative algorithms [8]–
[11] converge to a square-root factor (or a factorization) of X?, even
with random initialization. Therefore, we can recover the rank-r?

global minimizer X? of (P0)-(P1) by running local search algorithms
on the factored function g(U) (or g(U, V )) if we know an upper
bound on the rank r?. Furthermore, our main result only relies on
the restricted well-conditionedness of f(X). Therefore, in addition
to low-rank matrix recovery problems [5], [15], [39], it is also
applicable to many other low-rank matrix optimization problems with
non-quadratic objective functions, including 1-bit matrix completion
[40], [41], robust PCA [42]–[44], Poisson PCA [45], and other low-
rank models with generalized loss functions [46]. For problems with
additional linear constraints, as those studied in [28], [47], one can
combine the original objective function with a least-squares term that
penalizes the deviation from the linear constraints. As long as the
penalization parameter is large enough, the solution is equivalent to
that of the constrainted minimizations and hence is also covered by
our main theorem.
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