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I. INTRODUCTION

Iterative reconstruction methods have become the standard ap-
proach to solving inverse problems in imaging including denoising
[1], [2], [3], deconvolution [4], and interpolation [5]. With the
appearance of compressed sensing [6], our theoretical understanding
of these approaches evolved further with remarkable outcomes [7],
[8]. These advances have been particularly influential in the field of
biomedical imaging, e.g., in magnetic resonance imaging (MRI) [9]
and X-ray computed tomography (CT) [10]. A more recent trend
is deep learning [11], which has arisen as a promising framework
providing state-of-the-art performance for image classification [12]
and segmentation [13], regression-type neural networks [14], [15],
[16]. In this paper, we explore the relationship between CNNs
(Convolutional neural netwrok, ConvNet) and iterative optimization
methods for one specific class of inverse problems: those where the
normal operator associated with the forward model is a convolution.
Based on this connection, we propose a method for solving these
inverse problems by combining a fast, approximate solver with a
CNN. We demonstrate the approach on low-view CT reconstruction
and accelerated MRI using residual learning [16] and multilevel
learning [13].

II. METHOD AND RESULTS

Fig. 1. Structure of the proposed convolutional network.

Method (BPConvNet : BackProjection CONVolutional Net-
work) : Our goal here is not to follow iterative methods (e.g.
by building a network that corresponds to an unrolled version of
some iterative method), but rather to explore a state-of-the-art CNN
architecture. We base our CNN on the U-net [13], which was
originally designed for segmentation. There are several properties of
this architecture that recommend it for our purposes.

Multilevel decomposition: The U-net explores a dyadic scale
decomposition based on max pooling, so that the effective filter size
in the middle layers is larger than that of the early and late layers.
This is critical for our application because the filters corresponding
to H∗H (and its inverse) may have non-compact support, e.g. in
CT. Thus, a CNN with a small, fixed filter size may not be able to

effectively invert H∗H . This decomposition also has a nice analog
to the use of multiresolution wavelets in iterative approaches.

Multichannel filtering: U-net employs multichannel filters, such
that there are multiple feature maps at each layer. This is the standard
approach in CNNs [12] to increase the expressive power of the
network [17]. The multiple channels also have an analog in iterative
methods: In the ISTA (iterative shrinkage thresholding algorithm) for-
mulation [18], we can think of the wavelet coefficient vector as being
partitioned into different channels, with each channel corresponding
to one wavelet subband [19], [20]. The CNN architecture greatly
generalizes this by allowing filters to make arbitrary combinations of
filters.

Residual learning: As a refinement of the original U-net, we add
a skip connection [16] between input and output, which means that
the network actually learns the difference between input and output.
This approach mitigates the vanishing gradient problem [21] during
training. This yields a noticeable increase in performance compared
to the same network without the skip connection.

Implementation details: We made two additional modification to
U-net. First, we use zero-padding so that the image size does not
decrease after each convolution. Second, we replaced the last layer
with a convolutional layer which reduces the 64 channels to a single
output image. For the multichannel data, the number of channels in
the last layer will be changed.

Results The experiments provide strong evidence for the feasibility
of the BPConvNet for sparse-view CT reconstruction and accelerated
MRI. In CT, down sampling arose regularly in angular dimension, and
in MRI, we chose a variable density down sampling mask with the
factor of 6. In real datasets, the SNR improvement of the BPConvNet
came from its ability to preserve fine details in the images. This points
to one advantage of the proposed method over iterative methods:
the iterative methods must explicitly impose regularization, while
the BPConvNet effectively learns a regularizer from the data. The
computation time for the BPConvNet was about 200 ms for the FBP
and 200∼300 ms in GPU for the CNN for a 512 × 512 image. In
accelerated MRI, BPConvNet spent 100∼150ms in GPU for the CNN
for a 320×320×8 volume (multichannel images [22]). The numbers
of training dataset are 475 for both modalities.

III. CONCLUSION

In this paper, we proposed the (F)BPConvNet. The structure of
the proposed CNN is based on U-net, with the addition of residual
learning. This approach was motivated by the convolutional structure
of several biomedical inverse problems, including CT, MRI, etc.
Specifically, we showed conditions on a linear operator that ensure
that its normal operator is a convolution.
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Fig. 2. Ground truth image and reconstructed images of experimental dataset from 50 views using FBP in CT, TV regularized convex optimization [10]
(‘TV’), and the FBPConvNet.

Fig. 3. Ground truth image and reconstructed images of experimental dataset [22] from 6-fold down sampling in MRI using zero inserted inverse Fourier
transform (‘BP’), TV regularized convex optimization [23] (channel by channel processing) (‘TV’), and the BPConvNet.
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