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Abstract—Low-rank matrix factorization plays a key role in a plethora
of problems commonly met in machine learning applications dealing with
big data as it reduces the size of the emerging optimization problems.
In this work we introduce a novel low-rank promoting regularization
function which gives rise to an algorithm that induces sparsity jointly on
the columns of the matrix factors. Apart from the reduced computational
complexity requirements it offers, the new algorithm also provides a basis
of the sought low-rank subspace.

I. INTRODUCTION

Low-rank matrix factorization has been at the heart of a great
many problems dealing with big data. In mathematical terms it can
be formulated via the following minimization problem:

argmin
X,W

l(Y,XWT ) + δ‖XWT ‖pSp (1)

where l(·) denotes the function that measures the distance between
data matrix Y ∈ RN×K and its low-rank representation XWT ;
with X ∈ RN×L, W ∈ RK×L standing for the coefficients’ matrix
and the subspace matrix, respectively, (with L � min(K,N)) and
δ > 0 being a regularization parameter. In the low-rank setting it is
assumed that the data matrix Y can be well represented in a space
of an unknown dimension r ≤ L. In light of this, the second term of
(1) denotes the low-rank inducing Schatten-p quasi-norm applied on
the matrix XWT . Recently, a wealth of algorithms have appeared
differing on the selection of p, [1]. Note that the choice of p affects
the convexity of problem (1), e.g. for p = 1 (which corresponds
to the nuclear norm) the minimization problem is convex w.r.t. the
product XWT , while for p < 1 the problem is non-convex.

In the matrix factorization setting, (1) is replaced by a relaxed
minimization problem, which arises by utilizing upper-bounds of the
low-rank promoting terms [2]. Focusing on the nuclear norm, the
celebrated tight upper bound of the nuclear norm defined as

‖XWT ‖∗ ≡ inf

L∑
l=1

‖xl‖2‖wl‖2 ≡ inf
1

2

L∑
l=1

(
‖xl‖22 + ‖wl‖22

)
(2)

where xl and wl denote columns of X and W, respectively,
has been widely applied in numerous works offering stimulating
results [3]–[5]. Recently, generalized approaches have been put forth
corresponding to the non-convex scenario, where p ∈ [0, 1), [6]. Such
methods, sacrifice global optimality guarantees, [3], in favor of better
estimation results.

II. PROPOSED PROBLEM FORMULATION

Along those lines, we herein propose a novel non-convex low-rank
promoting term which stems from the group-sparsity `1/`2 norm.
The key idea, first introduced in [7], is to relate column sparsity
imposition of X to that of column sparsity of the subspace matrix W.
The proposed minimization problem (different from that introduced
in [7]) is expressed as follows:

argmin
X,W

l(Y,XWT ) + δ

L∑
l=1

√
‖xl‖22 + ‖wl‖22 (3)

Remark 1: The (non-smooth) low-rank promoting term of (3), induces
non-separability w.r.t. the columns of X, W. This, allows for some
of the L terms of the summation corresponding to the `2 norms of
the coupled vectors [ xl

wl
] to be shrunk.

Next we present a minimization algorithm for solving problem
(3) using the square of the Frobenious norm as the distance metric
function l(·).

III. PROPOSED MINIMIZATION ALGORITHM

It is easily observed that an exact alternating minimization of (3)
w.r.t. columns xl and wl is infeasible due to the abovementioned
non-separability of the proposed low-rank promoting term. Moreover,
non-smoothness induces serious obstacles in the pursuit of stationary
points. Taking into account the above restrictions and following the
block successive minimization framework of [8], we alternatingly
update blocks xl and wl by minimizing appropriately defined for
xl’s and wl’s upper bound functions ul’s considering the remaining
blocks fixed to their latest available (at iteration i) values. For instance
uls corresponding to updates of xl’s (similar functions are defined
for wl’s) are given below:

ul(xl ) =
1

2
‖Y − x lw

iT
l −Xi

¬lW
iT
¬l‖

2
F (4)

+
δ

2

L∑
l=1

( ‖x l‖22 + ‖w il‖
2
2 + η2√

‖x i
l
‖22 + ‖w i

l
‖22 + η2

+
√
‖x i
l
‖22 + ‖w i

l
‖22 + η2

)
with η a small constant (introduced to guarantee smoothness). The
proposed algorithm is presented in Algorithm 1.

Proposition 1: The sequence of {Xi,Wi} generated by Algorithm
1 converges to a stationary point (local minimum) of the cost function
defined in (3) Proof: Can be proved utilizing Theorem 1 of [8].

IV. EXPERIMENTS

A. Synthetic Data

We randomly generate a subspace matrix U ∈ R100×5 and
and coefficients matrix V ∈ R500×5 for producing data matrix
Y = UV T which is contaminated by additive Gaussian i.i.d noise
of σ = 10−2. Performance of Algorithm 1 is compared to that
of an alternating regularized least squares algorithm arising by the
utilization of the nuclear norm’s upper bound defined in (2). In the
absence of knowledge of the true rank both the tested algorithms are
initialized with L = 15. Fig. 1 shows the reconstruction error per
iteration and the structure of the estimated subspace matrices.

B. Real Hyperspectral dataset

The efficiency of the proposed algorithm is now tested in the
denoising problem of a real hyperspectral dataset i.e. Washighton DC
hyperspectral image (HSI) captured by HYDICE at 191 contiguous
spectral bands. The region of interest consists of 150 × 150 pixels.
The true image (Fig. 2a) is corrupted by additive Gaussian noise of
σ = 8 × 10−2 resulting to the noisy version shown in Fig. 2b. The
reconstructed HSI is given in Fig. 2c. The initial rank L is set to 45.
In Fig. 3, the corresponding structural similarity indexes (SSIMs) per
band obtained by the proposed Algorithm 1 and the nuclear norm’s
upper bound based algorithm are presented.



a) Normalized Reconstruction Error ( ‖Ytrue−X̂ŴT ‖F
‖Ytrue‖F

) b) Ŵ, Algorithm 1 c) Ŵ, Nuclear norm’s upper-bound
algorithm

Fig. 1. Simulation results. It can be easily seen, the proposed algorithm achieves lower reconstruction error than that of the nuclear norm based relevant
algorithm. From b) it is observed that Algorithm 1 not only imposes low-rankness, but also it converges to a basis of the true subspace. This is carried out
by zeroing columns of X and W jointly.

a) true HSI b) noisy HSI, SNR = 9dB c) reconstructed HSI

Fig. 2. Results on Washighton DC HSI. False color images (bands 10,60 and 160). From a visual inspection of Fig. 2c, it is clear that the proposed algorithm
is proven adept at recontructing the true image with high accuracy. This is attributed to the fact that it efficiently exploits the low-rank nature of the HSI via
the novel `2/`1 norm based low-rank promoting term. It should be noted that both the estimated X̂ and Ŵ consist of 4 nonzero columns, i.e, 41 columns
have been zeroed.
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Fig. 3. SSIMs of the proposed Algorithm 1 and the nuclear norm’s upper
bound based algorithm. Algorithm 1 (blue line) outperforms (higher SSIM)
the nuclear norm’s upper bound based algorithm in several bands.

Algorithm 1 The proposed Alternating Iterative Reweighted Least
Squares type algorithm

Initialize W0,X0,δ
for i = 1, 2, . . .
l = 1, 2, . . . , L

x̂l ≡
(
wi,T
l

wi
l +

δ√
x
T,i
l

xi
l
+w

T,i
l

wil+η2

)−1 (
Y −Xi

¬lW
i,T
¬l

)
wi
l

ŵl =

(
xi,T
l

xil +
δ√

x
T,i
l

xi
l
+w

T,i
l

wrl+η2

)−1 (
Y −Xi

¬lW
i,T
¬l

)T
xil

end
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