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Abstract—We propose a theoretical analysis of the super-resolution
performance of the BLASSO “off-the-grid” recovery method from
Laplace transform measurements. This transform is not translation
invariant, thus requiring the use of theoretical and algorithmic tools that
go beyond traditional deconvolution-based methods. We show that the
BLASSO offers a stable and computationally tractable super-resolution
of positive spikes. In particular, when the signal-to-noise ratio is of the
order of 1/t2N−1 (where t is the spacing between the N spikes to
recover), the BLASSO program outputs the correct number of spikes.
This result suggests that the BLASSO should be a method of choice to
tackle challenging Laplace inversions, which are at the heart of recently
proposed fluorescence imaging methods.

I. INTRODUCTION AND PREVIOUS WORKS

a) Sparse Spikes Super-Resolution: it aims at recovering highly
localised features from noisy low-resolution observations. The sparse
unknown data to recover is modelled as a sum of Dirac masses m0

def.
=∑N

i=1 aiδxi with amplitudes ai > 0 and positions xi ∈ X on some
domain X (for instance an interval of R, or some higher-dimensional
set). The noisy low-resolution observations are defined as y = Φm0+
w ∈ H where w ∈ H is an additive noise. The linear map Φ is
the imaging operator, and it accounts for the measurement device
(for instance a camera or a medical imaging device). This operator
is defined on the space M(X) of Radon measures on X (which
includes in particular sums of Dirac masses) and takes values in
some Hilbert space H (typically RP or CP for a finite number of
measurements, or a functional space for continuous measurements).
Such a linear map is conveniently written as ∀m ∈M(X), Φm =∫
X
ϕ(x)dm(x), where ϕ : X → H is a smooth kernel function.

Although this is a simple setup, it covers a surprisingly large class
of problems of practical interest, such as decoding neural spikes in
electrophysiology [9] or single-molecule fluorescence imaging [12].
Many applications consider that the operator Φ is translation-invariant
(corresponding to a deconvolution problem). However, there is a
growing interest in more involved non-translation-invariant operators.
Among these, one of the simplest is the Laplace transform, that we
study in this article. This operator is for instance at the heart of the
multi-angle TIRF imaging technic, allowing to reach an axial (depth)
super-resolution of the observed molecules by inverting a 1-D Laplace
transform, see for instance [2].

b) BLASSO Off-the-Grid Recovery: Following several recent
works, we consider the BLASSO convex optimization problem over
the space M(X)

min
m∈M(X)

1

2
||Φm− y||2H + λ|m|(X), (Pλ(y))

where λ > 0 is the regularization parameter and |m|(X) is the total
variation of the measure m (not to be mistaken for the total variation
of the gradient, commonly used in image processing), that extends
the discrete `1 norm of vectors to measures

|m|(X) = sup

{∫
X

ψdm; ψ ∈ C(X), ||ψ||L∞(X) ≤ 1

}
.

Problem (Pλ(y)) does not introduce any discretization grid, and is
thus both easier to analyze theoretically and leads to more precise

super-resolution results. We refer the reader to [3], [4], [5], [6],
[7], [8], [10], [11] for more details about the BLASSO program,
its properties, and computational algorithms.

c) Recovery Properties: We consider in the following the 1-D
case X = R. To study the super-resolution capability of (Pλ(y)),
we consider the case where all the Dirac masses cluster near some
central position x̄ ∈ X , i.e. xi = x̄+tzi for some arbitrary directions
zi and a small t > 0. It is possible to extend the theory to multiple
clustering points.

It is shown in [11] that, in the limit of small t, the recovery
performance of (Pλ(y)) is governed by the following smooth function
ηW : R→ R (which only depends on the clustering position x̄).

Definition 1 (Asymptotic pre-certificate). Let ηW = Φ∗pW where

pW
def.
=argmin

p∈H

{
||p||H; (Φ∗p)(k)(x̄) = δk0 , 0 ≤ k < 2N

}
.

This function has all its derivatives up to order 2N − 1 that vanish
at x̄ and can be evaluated numerically by solving a 2N ×2N linear
system [11].

ηW is said to be “non-degenerate” if |ηW (x)| < 1 for x 6= x̄ and
if η(2N)

W (x̄) 6= 0. We showed in [11] that if ηW is non-degenerate
and if ( w

t2N−1 ,
λ

t2N−1 ,
w
λ

) = O(1), then the measure solving (Pλ(y))
is unique and is composed of exactly N Diracs located close to the
initial ones. This signal-to-noise condition matches (up to a constant)
the Cramer-Rao bounds (when the noise is assumed to be Gaussian
distributed) [1], suggesting the good practical behavior of the method.

II. CONTRIBUTIONS

We study two variants of the Laplace transform, defined on X =
[a,+∞[ for some a > 0 (the input position 0 needs to be avoided to
ensure a finite-energy transform) and H = L2(R+) (endowed with
the classical scalar product). These transforms are defined through
their kernels ϕ, which are

ϕ(x) : h ∈ (0,+∞) 7−→
{
e−hx (un-normalized),√

2xe−hx (normalized).

In the normalized case, ||ϕ(x)||H = 1 (which is the usual normal-
ization constraint for sparse recovery methods), so that this is the
transform that should be preferred in practice to avoid introducing
bias in the recovered positions. Our main contribution is the following
result, which shows that for the Laplace transform, solving (Pλ(y))
leads to a stable super-resolution for positive measures.

Theorem 1. ηW is non-degenerate, and ∀x > a,

ηW (x) =

 1−
(
x−x̄
x+x̄

)2N

(un-normalized),

2
√
xx̄

x+x̄

∑2N−1
k=0

1·3···(2k−3)

2kk!

(
x−x̄
x+x̄

)2k

(normalized).

Figure 1 illustrates the behavior of ηW for different values of N .
Future works include the use of the conditional gradient algorithm [3]
to solve numerically large-scale problems for MA-TIRF axial single
molecule localization [2], to highlight the practical relevance of our
theoretical findings.
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Fig. 1. ηW for the Laplace Transform in the un-normalized (left) and
normalized (right) case, for an increasing number of spikes.

ACKNOWLEDGMENT

This work has been partly supported by the European Research
Council (ERC project SIGMA-Vision).

REFERENCES

[1] T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot. Sparse
sampling of signal innovations: Theory, algorithms and performance
bounds. IEEE Signal Processing Magazine, 25(2):31–40, 2008.

[2] J. Boulanger, C. Gueudry, D. Munch, B. Cinquin, P. Paul-Gilloteaux,
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