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Abstract—In this work, we study the support recovery guarantees of
underdetermined sparse regression using the `1-norm as a regularizer
and a non-smooth loss function for data fidelity. More precisely, we focus
on the `1 and `∞ losses, and contrast them with the usual `2 smooth
loss. We identify an “extended support” for the vector to recover and
derive a sharp condition which ensures that it is stable to small additive
noise in the observations. We give a numerical analysis of the support
stability of compressed sensing recovery with these different losses. This
highlights different parameter regimes, ranging from support stability to
increasing support instability.

I. INTRODUCTION

This work studies sparse linear inverse problems of the form

y = Φx0 + w,

where x0 ∈ Rn is the vector to estimate, assumed non-zero and sparse
with support I def.

= supp(x0), w ∈ Rm is some additive noise and the
design matrix Φm×n is in general rank deficient, i.e., typically in the
high-dimensional regime where m� n. In order to recover x0, we
consider the following sparsity-promoting optimization problem

xτ ∈ Argmin
x∈Rn

{||x||1 s.t. ||Φx− y||α 6 τ} , (Pτα(y))

where the constraint size τ > 0 should be adapted to the noise level.
The usual “smooth” `2 loss function has been studied in depth in
the literature. In contrast, the `1 and `∞ loss functions which are
the focus of this paper, are polyhedral and non-smooth. They lead
to significantly different estimation results. The `1 case corresponds
to a “robust” loss function, and is important to cope with impulse
noise or outliers contaminating the data (see [9], [7]). At the extreme
opposite, the `∞ loss is typically used to handle uniform noise such
as in quantization (see [8]). This paper studies the stability of the
support supp(xτ ). In particular, we provide a sharp analysis for the
polyhedral `1 and `∞ cases that allows one to control the deviation
of supp(xτ ) from supp(x0) if ||w||α is not too large and τ is chosen
proportionally to ||w||α. The general case is studied numerically in
a compressed sensing experiment where we compare supp(xτ ) and
supp(x0) for α ∈ [1,+∞].

Under the assumption that x0 is solution of Basis-Pursuit [1],

min
x
{||x||1 s.t. Φx = Φx0} , (P0(Φx0))

we prove that supp(xτ ) will be characterized by an element in the
set of minimum norm certificates (see [10])

pβ ∈ Argmin
p∈Rm

{
||p||β s.t. Φ∗·,Ip = sign(x0,I), ||Φ∗p||∞ 6 1

}
, (1)

KD and LJ are funded by the Belgian F.R.S.-FNRS. JF is partly supported
by Institut Universitaire de France. GP is supported by the European Research
Council (ERC project SIGMA-Vision). The paper corresponding to this
extended abstract is [2], accepted to NIPS 2016, Barcelone, Spain. See
https://arxiv.org/abs/1611.01030 for supplementary material.

where β is defined by 1
α

+ 1
β

= 1 and for sets of indices S and
I , ΦS,I is the submatrix of Φ restricted to the rows in S and the
columns in I . In turn, we define the extended support as

J
def.
= sat(Φ∗pβ) = {i ∈ {1, . . . , n} | |(Φ∗pβ)i| = 1} . (2)

Finally, let us define the model tangent subspace
Tβ

def.
= par(∂||pβ ||β)⊥ [11], where par(C) is the subspace parallel

to the convex set C, ∂ is the subdifferential operator, PTβ is the
orthogonal projection onto Tβ ; see Figure 1 for illustration. The
restricted injectivity condition then reads

Ker(PTβΦ·,J) = {0}. (INJα)

It is possible to show [2] that this condition actually holds almost
surely, e.g., when the entries of the design matrix follow a continuous
distribution. Table I summarizes for the three specific cases α ∈
{1, 2,+∞} the quantities introduced here and in the next section.

II. MAIN RESULT

Our main contribution is Theorem 1 below. A similar result is
known to hold in the case of the smooth `2 loss [4], [3]. Our paper
extends it to non-smooth losses α ∈ {1,+∞}.

Theorem 1. Let α ∈ {1, 2,+∞}. Suppose that x0 is solution
to (P0(Φx0)) and let pβ be a minimal norm certificate (see (1))
with associated extended support J (see (2)). Suppose that the
restricted injectivity condition (INJα) is satisfied and let vβ,J

def.
=

(PTβΦ·,J)+PTβ∂||pβ ||β . Then there exist constants c1, c2 > 0 de-
pending only on Φ and pβ such that, for any (w, τ) satisfying

||w||α < c1τ and τ 6 c2x where x
def.
= min

i∈I
|x0,I |, (3)

a solution xτ of (Pτα(Φx0 + w)) with support equal to J reads

xτ,J
def.
= x0,J + (PTβΦ·,J)+w − τvβ,J . (4)

This theorem shows that if the noise level ||w||α is small and τ
is chosen in proportion to the minimal signal-to-noise ratio, then
there is a solution supported exactly in the extended support J .
Note in particular that this solution (4) has the correct sign pattern
sign(xτ,I) = sign(x0,I), but might exhibit outliers if J̃ def.

= J\I 6= ∅.
The special case I = J characterizes the exact support stability
(“sparsistency”). The hypotheses as well as the contants c1 and c2
depend on Φ and, even though it goes beyond our scope, one could
study the influence of m on these assumptions.

III. NUMERICAL EXPERIMENTS

To shed light on this result, we show on Figure 2, a small simulated
CS example for (α, β) = (∞, 1). On Figure 3 we address numerically
the problem of comparing supp(xτ ) and supp(x0) for a sweep over
α ∈ [1,∞]. It shows that under the assumptions of Theorem 1, the
`2 data fidelity constraint provides the highest support stability and
the `1 loss function has a small advantage over the `∞ loss.
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Fig. 1: Model tangent subspace Tβ in R2 for (α, β) = (∞, 1).

α Tβ (INJα) (PTβΦ·,J )+ vβ,J

2 Rm Ker(Φ·,J ) = {0} Φ+
·,J Φ+

·,J
p2
||p2||2

∞ {u | supp(u) = S } Ker(ΦS,J ) = {0} Φ−1
S,J IdS,· Φ−1

S,J sign(p1,S)

1
{
u

∣∣ uZ = ρ sign(p∞,Z), ρ ∈ R
}

Ker(

[
ΦZc,J
q∗ZΦZ,J

]
) = {0}

[
ΦZc,J
q∗ZΦZ,J

]−1 [
IdZc,·
q∗ZIdZ,·

] [
ΦZc,J
q∗ZΦZ,J

]−1 [
0|Zc|

1

]
TABLE I: Model tangent subspace, restricted injectivity condition and vβ,J with S def.

= supp(p1), Z def.
= sat(p∞) and qZ

def.
= sign(p∞,Z). Note that Zc is

the complementary index set of Z.
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Fig. 2: (best observed in color) Simulated compressed sensing example showing xτ (above) for increasing values of τ and random noise w respecting the
hypothesis of Theorem 1 and Φ∗pβ (below) with J̃ def.

= J\I and Jc is the complementary index set of J(= sat(Φ∗pβ)) which predicts the support of xτ
when τ > 0. The parameters are n = 20, m = 10, |I| = 4, x0,I ∈ {±1}|I| and Φ ∈ Rm×n with Φi,j ∼i.i.d. N (0, 1) and we use CVX/MOSEK [6], [5]
at best precision. The noise w is uniformly distributed with wi ∼i.i.d. U(−δ, δ) and δ chosen appropriately to ensure that the hypotheses hold. Observe that
as we increase τ , new non-zero entries appear in xτ but because w and τ are small enough, as predicted, we have supp(xτ ) = J .
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Fig. 3: (best observed in color) Sweep over 1
α
∈ [0, 1] of the empirical probability as a function of k that x0 is solution to (P0(Φx0)) and |Jpβ\I| 6 se

for three values of the support excess threshold se ∈ {0, 50, 150}. The dotted red line indicates α = 2. All computations use CVX/MOSEK [6], [5] at best
precision. We set n = 1000, m = 900 and generate 200 times the sensing matrix Φ ∈ Rm×n with Φij ∼i.i.d N (0, 1). We generate 60 different k-sparse
vectors x0 with support I where k def.

= |I| varies from 10 to 600. The non-zero entries of x0 are randomly picked in {±1} with equal probability. The yellow
to blue transition can be interpreted as the maximal k to ensure, with high probability, that |Jpβ\I| 6 se. It is always (for all se) further to the right at
α = 2 which means that the `2 data fidelity constraint provides the highest support stability. This maximal k decreases gracefully as α moves away from 2 in
one way or the other. The `1 loss function has a small advantage over the `∞ loss.
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