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ABSTRACT

Source localisation, such as direction of arrival (DoA) estimation,
is an important issue in a number of applications such as underwater
acoustic detection, target tracking and environmental monitoring [1]
[2]. The key to successful source localisation lies in the reliable
extraction of useful information about the states of targets from
the observations, which are collected by acoustic transducers, often
operated in a noisy environment [2] [3]. Due to the constraints
on computation resources, sensing range, communication bandwidth,
and energy consumption, it is usually desirable not to use all the
sensors in the array to report their measurements at all the time
instants [4] [5] [6] [7]. This leads to the problem of sparse array
optimisation and sensor selection, which seeks to activate a subset of
sensors at different time to optimize the tracking performance under
the given constraints.

In this paper, we focus on the problem of using as few sensors
as possible to achieve DoA estimation at each sampling time.
Traditionally, DoA estimation is addressed by methods, such as
Capon beamformer, high-resolution and multiple signal classification
(MUSIC) algorithm [8] [9] [10]. Recently, spatial sparsity based
optimisation, which aims at extracting meaningful lower-dimensional
information from high-dimensional data [11], has attracted great
interests. Based on compressive sensing (CS) theory [12], the DoAs
can be estimated by solving an optimisation problem constrained with
the l1 norm of a vector of the coefficients corresponding to the source
activities in the spatial domain [13], which is assumed to be sparse,
implying that only a few sources are active simultaneously. In these
existing works, a full array has been used. However, as pointed out
earlier, it would be desirable if the spatial sparsity can be used jointly
with the array sparsity so that the sources can be localised with as
few sensors from the array as possible.

In our previous work [14], we have proposed an optimisation
method to exploit jointly the array and spatial sparsity, to achieve
source detection in a subset of space using as few sensors as
possible at each time instant. The method is operated in a two-
step iterative process, where the first step is to find the minimum
number of sensors to be used in array and the second step is to
perform source localisation based on the least absolute shrinkage
and selection operator (LASSO) algorithm using the selected sensors.
Both stationary and moving sources are considered. The approach
can be initialised at a random location and eventually finds the DoA
after it converges. Figure 1 and 2 show the DoA estimations for both
stationary source and moving source with noises. Although the results
demonstrate satisfatory performances of the joint approach, there are
still estimation noise which happen at both ends of the DoA range
(+90 degrees, -90 degrees).

To further improve the DoA estimation results, we consider the use
of statistical information based on Fisher Information Matrix (FIM)

in this joint array and spatial sparsity based optimisation framework.
The FIM, which is used to calculate the Maximum Likelihood
Estimation (MLE), can be defined as E{( ∂logy(x)

∂x
)( ∂logy(x)

∂x
)T },

where y is the received signal and x is the source direction, and (·)T
denotes the transpose of a matrix [15] [16]. The proposed algorithm
is still a two-step method.

In the first step, a FIM constraint here is used to limit the difference
between the MLE of the received signal y and the scaled version
diag(w)y where w is the sparse complex vector weight coefficient
for each sensor, so that in the following stage y can be replaced
by diag(w)y more strictly. The constrained l1 norm is written as
‖f(x) − diag(w)y‖1 ≤ βN , where β ∈ <+ is a threshold to
reduce the error before the observed signal is scaled by the weight
coefficients, N is the number of potential sensors, f(x) is the N
dimensional vector holding the values of each element in the column
of F(x)T and the expectation is obtained as the average values.

In the second step, to improve the DoA reconstruction, a constraint
is added to the LASSO function as ‖f(x)TA− (Ax)HA‖1 ≤ γM ,
where the value of FIM is used to constrain the similarity between
the DoA reconstruction and the expression of the MLE of y mapped
onto the possible global source directions matrix A, γ ∈ <+ is
a constrained parameter and M is the number of potential source
directions, and (·)H is a Hermitian operator. As a result, the DoA
estimation becomes more robust. Figure 3 and 4 are the results of the
narrowband DoA estimations with the FIM constrained joint approach
for the moving sources without and with noise. An example of
tracking from 50 degrees to -50 degrees is shown to demonstrate the
preformance of the proposed joint approach, where 21 of 100 sensors
are used at every sampling instant. It can be seen that the estimation
errors as happened in the previous results have been reduced.

We also extend this method from the narrowband to the broadband
scenario. For the wideband case, the DoA estimation can be done in a
similar way for J frequency bands. In the first step, the desired beam
response matrix P ∈ CM×J can be reshaped to an MJ dimensional
vector, preshape ∈ C1×(MJ). Accordingly, the dictionary matrix A
is modified to Aarray ∈ CN×(MJ). In the second step, the dictionary
matrix becomes Aspatial ∈ C(NJ)×M . Through these reshaping
operations, the joint approach can be performed in a narrowband-like
manner, with the FIM constraints added into the optimisation process.
More results for DoA estimations for both stationary source and
moving source, in both noiseless and noisy cases, will be presented
in this workshop. A more detailed discussion for using the FIM will
be presented, including the process to calculate the MLE via the
FIM, the possible convex optimization problem, and the problem of
computing the expectation.
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Fig. 1. Narrowband DoA estimations
for stationary source (SNR=20dB),
37/100 active sensors.
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Fig. 2. Narrowband DoA estimations
for moving source (SNR=20dB),
22/100 active sensors.
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Fig. 3. DoA estimations with FIM
constrained joint array sparsity and
spatial sparsity based approach for
moving source without noise.
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Fig. 4. DoA estimations with FIM
constrained joint array sparsity and
spatial sparsity based approach for
moving source with noise (SNR = 20
dB).
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