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Abstract—We describe our new scalable primal-dual convex optimiza-
tion framework to solve low-rank matrix recovery problems. The main
characteristics of our framework is the cheap per-iteration complexity
and the low-memory footprint. We demonstrate the flexibility and
scalability of our framework by solving matrix completion, quantum
tomography and phase retrieval problems.

I. INTRODUCTION

Low-rank matrix recovery problems have seen many applications
recently, which include but are not limited to the matrix completion
[1], clustering [2], robust subspace learning [3], quantum tomography
[4] and the phase retrieval via convex semidefinite relaxations [5].

In convex optimization, low-rankness is induced by the nuclear
norm (a.k.a., Schatten 1-norm, ‖ · ‖S1 ), which can appear in the
objective function or in the constraints. However, computation and
storage bottlenecks restrict the scalability of the state of the art convex
solvers for these problems. In this work, we describe a scalable
convex primal-dual algorithmic framework to solve low-rank matrix
problems. More details about this work can be found in [6] and [7].

II. ALGORITHM & CONTRIBUTIONS

Our algorithmic framework (universal primal-dual gradient
method, abbreviated as UniPDGrad) extends Nesterov’s universal
gradient methods [8] for the primal-dual setting in a non-trivial
fashion. We develop a new accelerated variant (AccUniPDGrad)
adopting FISTA scheme, which requires less computation compared
to the fast scheme in [8]. See [6] for detailed description of our
algorithmic scheme and the convergence guarantees. We summarize
the characteristics of our framework below.

A. Computational efficiency

Conditional gradient methods (CGM, a.k.a. Frank-Wolfe-type
methods [9]) attracted increasing interest in recent years (see [10],
[11] and the references therein). Its popularity comes from its cheap
iteration cost, especially when the feasible set is a simple polytope.

For low-rank matrix problems, at each iteration, the main competi-
tors of CGM (projected or proximal gradient methods) often require a
full singular value decomposition. On the other side, CGM leverages
the so called linear minimization oracles, which corresponds to the
computing a leading eigenvector which is much cheaper [10].

Linear minimization oracle of CGM is indeed a special case of a
the more general Fenchel-type operators:

sharpf (x) = argmax
s
{〈s, x〉 − f(s)}.

Our algorithmic framework also leverages Fenchel-type operators,
hence it has similar iteration cost as CGM.

B. Flexibility

CGM relies on some assumptions about the smoothness of the
objective function [10], [11]. Hence, when using CGM, we typically
consider the following formulation:

minimize
X∈X

1
2
‖A(X)− b‖22 subj. to ‖X‖S1 ≤ κ, (1)

where A : Rm×n → Rd is a linear map, κ is a tuning parameter,
and X is a convex set.

Our algorithmic framework also applies to the following flipped
formulation which is beyond the scope of CGM:

minimize
X∈X

1
2
‖X‖2S1

subj. to A(X)− b ∈ K, (2)

where K is a simple convex set. Note that this formulation can be
easier to tune with an accurate noise model.

C. Storage efficiency

While the solution has O(r(m+n)) degrees of freedom (r denotes
the rank of solution), a random dense iterate requires O(mn) storage.
Our framework has a dual description that requires less storage. Note
however that we need to keep track of the decision variable which
comes as a stream of rank-1 updates. Hence, we can use the thin
SVD updating method described in [12] to maintain the SVD of the
decision variable rather than computing it in the ambient dimensions.

III. NUMERICAL EXPERIMENTS

We assess the empirical performance of our algorithm solving ma-
trix completion, quantum tomography and phase retrieval problems.

A. Matrix Completion with MovieLens Dataset

We estimate a low-rank matrix X ∈ Rm×n from its subsampled
entries b ∈ Rd, where A(·) is the sampling operator. We apply our
algorithms to (1) and (2) using the MovieLens 100K dataset using the
default ub test and training data partitions. CGM cannot handle (2)
and only solve (1). Our metrics are the normalized objective residual
and the root mean squared error (RMSE) calculated for the test data.
Results are shown in Figure 1. See [6, Section 5.2] for details.

B. Quantum Tomography with Pauli Operators

A q-qubit quantum system is mathematically characterized by
its density matrix, which is a complex p × p positive semidefinite
Hermitian matrix X\, where p = 2q . We can deduce the state
from performing compressive linear measurements b = A(X) ∈ Cd

based on Pauli operators [4]. We generate a random pure quantum
state (e.g., rank-1 X\), and we take n = 2p log p random Pauli
measurements. For q = 14 qubits system, this corresponds to a
268′435′456 dimensional problem with n = 317′983 measurements.
We compare our algorithm against CGM. Results are shown in
Figure 2. See [6, Section 5.1] for details.

C. Phase Retrieval with Coded Random Diffraction Pattern

We consider coded diffraction pattern measurements with octonary
modulation, using the random design of the modulating waveforms
from [13] with L = 20 random waveforms. We compare the
computational time to reach 10−2 reconstruction error with different
approaches. We also test our framework on HD and full HD images.
Results are shown in Figures 3 to 5. See [7] for more details.
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Fig. 1. The performance of the algorithms for the MC problems. The dashed
lines correspond to the line-search (in the weighting step) variants. The empty
and filled markers correspond to the formulations (1) and (2) respectively, with
X = Rm×n. For (1), we choose the tuning parameter κ = 9975/2 as in [14].
For (2), we consider equality constraint in linear inclusion, i.e., K = {0}.
We set accuracy input ε = 10−3 for (Acc)UniPDGrad.
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Fig. 2. The convergence behavior of algorithms for the q = 14 qubits
quantum tomography problem. We solve a variant of (1) where X is the
positive semidefinite cone in Cn×n, and the nuclear norm constraint is
replaced with trace(X) = 1. The solid lines correspond to the theoretical
weighting scheme, and the dashed lines correspond to a variant which uses
greedy weights for the primal averaging step. We set accuracy input ε = 10−2

for (Acc)UniPDGrad.
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Fig. 3. The empirical comparison of the algorithms for solving phase retrieval
problem. We solve a (1), X is the positive semidefinite cone in Cn×n, and we
set κ = mean(b) as suggested in [7]. (Left) presents the time required by each
algorithm to reach 10−2 reconstruction error with respect to the data size. We
compare against the CGM and the solver provided in [13] which is based on
TFOCS software package [15]. (Right) illustrates the convergence behavior
of the algorithms in the tests with real images. Empty and filled markers
correspond to EPFL and Milky Way images in Figures 4 and 5 respectively.
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