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I. INTRODUCTION

It has been observed in a variety of contexts that gradient de-
scent methods have great success in solving low-rank matrix-
factorization problems, despite the relevant problem formula-
tion being non-convex. We consider in particular the applica-
tion of natural first order incremental gradient descent method
for subspace learning, constraining the gradient method to the
Grassmannian G(n, d). This algorithm is called Grassmannian
Rank-One Update Subspace Estimation (GROUSE). We have
theoretical results on the guaranteed error improvement for
two sampling cases: where each data vector of the streaming
matrix is fully sampled or undersampled by a sampling matrix
At ∈ Rm×n with m � n. We propose an adaptive step
size scheme, with which global convergence of GROUSE with
fully sampled noiseless data is guaranteed, despite the noncon-
vex formulation and constraints. As for the undersampled data
and noisy data, we prove that the proposed step size scheme
yields monotonic improvement in expectation on the defined
convergence metric.

We formulate the subspace estimation as a non-convex
optimization problem as follows. Given are a sequence of
observations xt = At(vt + ξt) where At ∈ Rm×n are known
sampling matrices, ξt ∈ Rn are additive noise, and vt ∈ Rn
are drawn from an unknown d-dimensional subspace, spanned
by Ū ∈ Rn×d with orthonormal columns. Let U ∈ Rn×d be
a matrix with orthonormal columns. Then we want to solve:

minimize
U∈Rn×d

T∑
t=1

min
wt
‖AtUwt − xt‖2 (1)

subject to span (U) ∈ G(n, d)

We study GROUSE (Fig 1) to solve the above problem, where
we process one observation at a time and perform a rank-one
update to generate a sequence of estimates Ut with the goal
that R(Ut)→ R(Ū), where R(·) denotes the column range.

II. CONVERGENCE RESULTS

A. Full noiseless data

The following adaptive step size scheme is derived by
maximizing the improvement on our convergence metric for
each update of GROUSE with fully sampled noiseless data.
More specifically, let ζtζtζt = det

(
ŪTUtU

T
t Ū
)

and suppose
At = In, ζt > 0, then we have [1], [2]

θt = arg max
θ

ζt+1/ζt = arctan (‖r‖/‖p‖) (2)

Given this step size scheme, global convergence of GROUSE
is guaranteed for fully sampled noise-free data despite the non-
convex formulation and constraints.

Theorem 1. [1] Let ζ∗ ∈ (0, 1] be the desired accuracy
of our estimated subspace. With fully sampled noiseless
data, suppose the initialization is drawn uniformly from the
Grassmannian G(n, d), then for any ρ > 0, after K ≥(
2d2/ρ+ 1

)
τ0 log(n)+2d log (1/2ρ(1− ζ∗)) (where τ0 ≈ 1)

updates of GROUSE, we obtain P (ζK ≥ ζ∗) ≥ 1− 2ρ.

B. Undersampled noiseless data

For undersampled data, we consider two typical cases,
missing data and compressively sampled data. We use the
same step size scheme (2) as that for full data. Under mild
conditions, we can prove that with probability exceeding
1− nδd/2(δ ∈ (0, 1)), the following unified framework holds
for both cases as long as we have m ≥ O(d log n) samples:

E
[
ζt+1

∣∣Ut] ≥ (1 + η
m

n

1− ζt
d

)
ζt (3)

where η ≈ 1 is slightly different for each sampling type [1].

C. Weighted Step Size Scheme for Noisy Data

A weighted step size scheme [2] θt = arctan
(

(1− α) ‖r‖‖p‖

)
allows similar results for noisy data, i.e., ξt 6= 0. We restrict
α ∈ [0, 1) with the goal that α → 1 as R(Ut) → R(Ū).
The intuition behind this strategy is that the noisy part will
gradually dominate ‖r‖, we hope to include less and less
information from the projection residual to our estimations
as R(Ut)→ R(Ū).

Theorem 2. Suppose the entries of ξt are independent and
identically distributed Gaussian random variables such that
E
[
‖ξt‖2/‖vt‖2

∣∣vt] ≤ σ2. Then with probability at least 1 −
nδ1d/2(δ1 ∈ (0, 1)), we obtain

E
[
ζt+1

∣∣Ut] ≥ (1 + η1
m

n

1− ζt
d

(
1− σ2

(1−ζt)
d

+ σ2

))
ζt (4)

III. CONCLUSION

We have shown global convergence results for GROUSE
with full noiseless data, and per-iteration improvement with
noise or undersampling. Leveraging techniques in stochastic
process theory, it may be possible to establish convergence
results for all cases in terms of the number of iterations
required before GROUSE first achieves a given accuracy.
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Fig. 1. The GROUSE Algorithm
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Fig. 2. Illustration of the bounds on K (Theorem 1) compared to their values
in practice, averaged over 50 trials with different n and d. We run GROUSE
to convergence for a required accuracy ζt = 1− 1e-4 and show the ratio of
K to the bound described in Theorem 1, d2 log(n) + d log 1

1−ζ∗ . We can
see that, for fixed n, our theoretical results become more and more loose as
we increase the dimension of the underlying subspace. However, compared
to the empirical mean, the empirical variance is very small. This indicates
that the relationship between our theoretical bounds and the actual iterations
required by GROUSE is stable.
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Fig. 3. We examine our theoretical result (3) for the expected improvement on
ζt for the undersampled case. We set n = 5000, d = 10, and run GROUSE
over different sampling numbers m. The plots are obtained by averaging over
50 trials. The diamonds denote the lower bound on expected convergence
rates described in (3). We can see that our theoretical bounds on the expected
improvement on ζt for both missing data and compressively sampled data
are tight from any random initialization, although we have only established
local convergence results for the missing data case [1] (global results for
compressively sampled data).
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Fig. 4. Illustration of expected convergence bounds given by (4) over 50
trials. In this simulation, we set n = 5000, d = 10. We run GROUSE with
multiple noise levels for the fully sampled case. The diamonds denote the
lower bound on expected convergence rates described in (4). As we can see
the expected improvement on ζt dumped by the presence of noise.
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