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Phase imaging is one of the key instruments in coherent optics

to make visible features of specimens, which are nearly invisible

in the conventional light microscopy, and produce precise high

resolution measurements (e.g. [1]- [3]). It is possible due to a high

phase sensitivity to variations in shape, refraction index and internal

structure of specimens. While only intensity of the light field can

be measured, visualization of phase from intensity observations is an

important problem. In the phase contrast microscopy, the wavefront

modulation in the Fourier plane was used in order to resolve this

problem. Despite the revolutionary success of these methods only

qualitative visualization of phase can be achieved in this way, where

the features of specimens even visible maybe be so distorted that

accurate measurements and even a proper interpretations can be

problematic.

Quantitative visualization is targeted on direct phase imaging and

precise measurements. In the modern development the quantitative

phase imaging is fundamentally based on digital data processing.

Let us consider the following formalization of the phase retrieval

problem:

ys= |Ps{uo}|2, s = 1, ..., L, (1)

where: uo∈ CN×N is an N × N complex-valued object (speci-

men); Ps: CN×N 7−→ CM×M is a complex-valued operator of the

wavefront propagation from the object to sensor planes, ys∈ RM×M+

is an M ×M intensity observations of the wavefronts at the sensor

plane. For the noisy data zs=G{|us|2}, s = 1, ..., L, where G stands

for a generator of random observations, the noisy {zs} are used

instead of {ys}.
In the optical setup shown in Fig.1 the forward propagation

operator Ps{uo} linking the object and sensor wavefronts, uo and

us, is of the form

us(ξ, η) = µ exp{j π
λf

(ξ2 + η2)}Fuo·Ms(ξ/λf, η/λf), (2)

where Fuo·M is the Fourier transform of the product

uo(x, y)Ms(x, y), Ms(x, y) is a complex valued transmission

function of the phase modulation mask, λ is a wavelength and f is

a focal length of the lens.

Reconstruction of the complex-valued object uo = ao exp(iϕo)
from noiseless {ys} or noisy observations {zs} is phase retrieval

problem. Here phase emphasizes that in the object the phase is a

variable of the first priority, while the amplitude may be treated as

an auxiliary variable often useful only in order to improve the phase

reconstruction.

The sparse representation can be imposed on complex-valued uo
directly using complex-valued basic functions or on the following

pairs of real-valued variables :

(1) The phase ϕ (interferometric or absolute) and the amplitude

Bo;

(2) The real and imaginary parts of uo.

In what follows, we use the sparsity imposed on the phase and the

amplitude. The variational formulation of the phase retrieval optimal

for noisy data results in the likelihood criterion and optimization with

the sparsity constraints. It has been shown in a number of works for

various optical problems (e.g. [5]-[6]) that the algorithms are iterative

and the nonlocal group-wise sparsity is implemented as the BM3D

filtering applied separately to phase and amplitude updates.

The phase retrieval for the considered problem provided Poissonian

noisy observations can be formalized as the Nash equilibrium bal-

ancing on ({us}L1 ,uo,θa, θϕ) of two criteria [7]:

L1({us},uo) =

L∑
s=1

n∑
l=1

[|us[l]|2χ− zs[l] log(|us[l]|2χ)] +(3)

1

γ1

L∑
s=1

||us − Ps{uo}||22,

L2(θϕ,θa,ϕ, a) = τa · ||θa||0 + τϕ · ||θϕ||0 + (4)

1

2
||θa − Φaa||22 +

1

2
||θϕ − Φϕϕ||22, uo = a ◦ exp(jϕ).

Here the analysis Φa and synthesis Φϕ frames are designed using

BM3D technique, i.e. nonlocal group-wise sparsity, and θa and θϕ
are the respective spectral variables for the amplitude and the phase.

It is shown for this formalization that the BM3D sparsity results

in the separate filtering of phase and amplitude of the form:

ϕ̂ = BM3Dphase(ϕ,, thϕ), â = BM3Dampl(a, thB),

where BM3D stands for BM3D thresholding filtering.

Here phase and ampl as indices of BM3D are used in order to

emphasize that the parameters of BM3D can be different for phase

and amplitude. BM3D procedures update (filter) input superindices

variables; thϕ and thB are threshold parameters of the algorithms.

This kind of phase/amplitude as well as real/imaginary parts sparsity

modeling has been applied for a number of phase imaging problems

(e.g. [5]-[8]). The complex domain sparsity targeted on the direct

sparse approximations of uo appeared in the recent works [4], [9]-

[11].

The main contribution of this paper is a development of the super-

resolution phase retrieval algorithm for the criteria (3)-(4 and the

optical setup shown in Fig.1, where a random phase modulation is

implemented by a spatial light modulators (SLM) located in the object

plane. The simulation experiments (Figs. 2-6) demonstrate a good

performance of the algorithm up to the super-resolution factor rs =
32. For rs = 32 the computational pixels are equal to λ/4, i.e. a

sub-wavelength resolution is demonstrated.
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Fig. 1. Optical setup with a single lens for phase retrieval from modulated

diffractive patterns: Object (o), Spatial light modulator (SLM), Lens and

Sensor (s). The object is placed against the lens and the distance from the

lens to the sensor is equal to the focal length of the lens f . The object, lens

and spatial light modulator (SLM) shown between the object and lens are

located in the same plane. In this consideration the object, SLM and lens are

wavefront transformers for a uniform monochromatic normally incident plane

wave (laser beam).

Fig. 2. Phase reconstructions, from left-to-right: (a) true lena image, (b)

reconstruction without phase modulation, (c) reconstruction with phase mod-

ulation but without SPAR filtering, (d) reconstruction with phase modulation

and with SPAR filtering, L = 1, rs = 1.

Fig. 3. 3D surfaces for sub-wavelength reconstruction of two phase-peak

images, rs = 32. The distance between the peaks is equal to 0.257 λ . A

sub-wavelength resolution is demonstrated.
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Fig. 4. Two-peaks reconstructions: distance between the phase peaks is

equal to 0.257 λ, rs = 32. Four 32 x 32 squares well seen in amplitude

reconstructions correspond to the four pixels of SLM. The cross-sections

are shown for the middle horizontal line of 2D images: solid (’red’) for

reconstructions and dotted (’blue’) for true variables.

Fig. 5. Sub-wavelength resolution of share plane absolute phase, maximum

value 56.8 rad, rs. Reconstructions from the very noisy data (left, failed) and

the nearly noiseless data (right).

Fig. 6. Super-resolution SPAR Lena phase image reconstructions, rs = 32.

The computational pixels are equal to 0.257 λ, sub-wavelength resolution is

shown.
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