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Problem Setting. We study Principal Components Analysis (PCA)
in the setting where some of the corrupting “noise” or interference
is correlated with the true data. Such corruption is often also called
“data-dependent” noise. We are given n-length data vectors,

yt := `t +wt + vt, t = 1, 2, . . . , where `t = Pat, wt = Mt`t,

P is an n × r matrix with orthonormal columns and r � n; `t
is the true data vector that lies in a low (r) dimensional subspace
of Rn, range(P ); at is its projection into this subspace; wt is the
data-dependent (correlated) noise; and vt is the uncorrelated noise
component with E[`tvt′] = 0. The matrices Mt are unknown. We
need to estimate range(P ). We assume the following about `t, Mt.
Asssumption 1. `t = Pat with at’s being r-length, zero mean,
mutually independent, bounded r.v.’s, with diagonal covariance Λ.

Define λ− := λmin(Λ), λ+ := λmax(Λ) and f := λ+

λ− .
Since the at’s are bounded, we can also define a finite constant
η := maxj=1,2,...rmaxt

(at)
2
j

λj
. Thus, (at)2j ≤ ηλj .

Asssumption 2. The data-dependency matrices Mt can be expressed
as Mt = M2,tM1,t with M2,t, M1,t satisfying the following. For
a q < 1, a b0 < 1, and a positive integer α0,

‖M1,tP ‖2 ≤ q < 1, ‖M2,t‖2 ≤ 1, (1)

and, for any α ≥ α0, and any α-length sequence of positive semi-
definite Hermitian matrices, At,∥∥∥∥∥ 1α

α∑
t=1

M2,tAtM2,t
′

∥∥∥∥∥
2

≤ b0 max
t∈[1,α]

‖At‖. (2)

Assumption 1 just states mutual independence and bounded-ness
of the `t’s. The first part of Assumption 2 bounds the instanta-
neous noise-to-signal ratio of the correlated component of the noise,
wt: using it, ‖wt‖2 ≤ q‖at‖2 = q‖`t‖2 and ‖E[wtwt

′]‖2 ≤
q2‖E[`t`t′]‖2. The second part can be understood as one way to
reduce the time-averaged power of wt. Observe that, ‖E[wtwt

′]‖2 ≤
q2λ+, whereas, ‖ 1

α

∑α
t=1 E[wtwt

′]‖2 ≤ b0q2λ+. Thus, when b0 is
small, the time-averaged correlated noise power will be much smaller
than the instantaneous one. This is useful because it helps to reduce
the time-averaged signal-noise correlation: using Cauchy-Schwartz,
it is not hard to see that ‖ 1

α

∑α
t=1 E[`twt

′]‖2 ≤
√
b0qλ

+.
One example where Assumption 2 holds is when wt is sparse with

time-varying support sets, denoted Tt. In this case, M2,t = ITt . If all
the sets Tt are mutually disjoint, the matrix on the LHS of (2) is either
block-diagonal, or is permutation-similar to a block-diagonal matrix,
with blocks At. Thus, in this case, clearly, (2) holds with b0 = 1/α.
This example can be generalized to also allow the support sets to
change every so often, and to not even be mutually disjoint; see [1].

Main Result. With the above assumptions, we study the most
commonly used PCA solution, simple eigenvalue decomposition
(EVD) on the empirical covariance matrix of the observed data. Let
P̂ be the matrix of top r eigenvectors of 1

α

∑α
t=1 ytyt

′. We bound
the subspace recovery error, SE(P̂ ,P ) := ‖(I − P̂ P̂ ′)P ‖2.

Theorem 3. Assume that vt satisfies ‖E[vtvt′]‖2 ≤ λ+
v

and ‖vt‖22 ≤ ηrvλ
+
v . For an εSE < 1, define d :=

max(1,
(r log 9+10 logn)ε2SE

r2(logn)f2q2
) and

α0 := Cη2d
(logn)max

(
r2f2q2, r2v(

λ+
v
λ− )2, rvrf

λ+
v
λ−

)
ε2SE

For an α ≥ α0, let P̂ be as defined above. Assume that Assumptions
1 and 2 hold with α0 defined above. If 3.3

√
b0qf ≤ εSE/4 and

3.3
λ+
v
λ− < εSE/4, then, with probability at least 1− 10n−10,

SE(P̂ ,P ) ≤ 6.6(
√
b0qf +

λ+
v

λ−
) ≤ εSE

Proof: http://www.ece.iastate.edu/∼namrata/ImprovedCorPCA.pdf
Consider the large n regime so that d = 1. To compare the effects

of correlated and uncorrelated noise, suppose that we equate the time-
averaged correlated noise power bound and the uncorrelated noise
power bound, and we also equate the bounds on ‖wt‖2 and ‖vt‖2.
Thus, suppose that λ+

v = b0q
2λ+ and ηrvλ+

v = ηrq2λ+. Then,
1) we need α0 = 2500 · 32 · 11η2(logn)r2q2f2; and
2) the bound 3.3

√
b0qf ≤ εSE/4 implies 3.3

λ+
v
λ− < εSE/4,

i.e., the bounds due to the correlated noise, wt, dominate. The reason
is that the bound on SE(P̂ ,P ) is governed by the ratio between the
norm of the perturbation matrix, D := 1

α

∑
t ytyt

′ − 1
α

∑
t `t`t

′,
and the minimum eigenvalue along the principal subspace, λ− [2].
The dominant terms in D are 1

α

∑
t `twt

′ and its transpose.
Discussion. To our best knowledge, most existing results that

study the simple EVD solution to PCA assume that the true data and
the corrupting noise are uncorrelated. This is valid in practice often,
but not always. There is, of course, a large amount of work on robust
PCA (PCA in the presence of additive sparse outliers) that assumes
nothing about the dependence between the outlier magnitudes and
the true data, e.g., [3], [4], [5], [6], [7]. In particular, these allow
the outlier magnitudes to be dependent on (correlated with) the true
data. However, these works focus on large magnitude sparse outliers
and hence need much more expensive solutions than simple EVD.
Moreover, these also need the columns of P to be dense (not sparse).
We compare simple EVD with two popular robust PCA solutions for
a problem involving small magnitude sparse outliers in Table I.

In recent work [1], we studied the correlated-PCA problem de-
scribed above. Our new result given in Theorem 3 above addresses
two important limitations of [1]. First, we generalize the observed
data model to also include an uncorrelated noise term. This is a
more practically valid noise model. Second, and most importantly, we
provide a significantly improved sample complexity bound. Theorem
3 shows that, in the large n regime, the sample complexity, α, is
lower bounded by Cr2(logn) q

2f2

ε2SE
. This is much better than our

earlier bound of Cr2(logn) f
2

ε2SE
[1]. For example, to get the subspace

error to below q/4, the current bound gives a sample complexity of
α ≥ 16Cr2(logn)f2 samples instead of α ≥ 16Cr2(logn) f

2

q2
.

http://www.ece.iastate.edu/~namrata/ImprovedCorPCA.pdf


Mean Subspace Error (SE) Execution Time (seconds)

EVD PCP A-M-RPCA EVD PCP A-M-RPCA

Experiment 1 0.0911 1.0000 1.0000 0.0255 0.2361 0.0810
(`t = Pat, P sparse)

Experiment 2 0.07233 0.00000015686 0.000011865 0.0237 0.6989 0.1504
(`t = Pat, P dense)

Experiment 3 0.3821 0.4970 0.4846 0.0223 1.6784 5.5144
(`t’s from real video)

TABLE I: Comparison of SE(P̂ ,P ) and execution time (in seconds). We compare EVD with two robust PCA solutions - PCP (Principal Components’
Pursuit [3]) and A-M-RPCA (Alt-Min-RPCA [6]). Experiment 1: We generated data with n = 500. We let `t = Pat with columns of P being
sparse. These were chosen as the first r = 5 columns of the identity matrix. We generate at’s iid uniformly with zero mean and covariance matrix
Λ = diag(100, 100, 100, 0.1, 0.1). Thus the condition number f = 1000. The data-dependent noise wt is generated as wt = ITtMs,t`t with Tt
generated so that Assumption 2 holds with α = 300 and b0 = 4/α (the sets Tt follow Assumption 1.3 of [1] with s = 5, ρ = 2, and β̃ = 1). The
entries of Ms,t were iid N (0, q2) with q = 0.01. The uncorrelated noise vt = 0. Observe that, since the columns of P are sparse, both PCP and
Alt-Min-RPCA fail. Both have average SE(P̂ ,P ) close to one whereas the average SE of c-EVD and EVD is 0.0908 and 0.0911 respectively. Moreover,
both of these are much slower than EVD as well. Experiment 2: Data was generated as above, but columns of P were dense. In this case, of course the
robust PCA solutions PCP and A-M-RPCA outperform simple EVD. Experiment 3: We used images of a low-rankified real video sequence (escalator
sequence from http://perception.i2r.a-star.edu.sg/bk model/bk index.html ) as `t’s.We made it exactly low-rank by retaining its top 5 eigenvectors and
projecting onto their subspace. This resulted in a data matrix L of size n × r with n = 20800 and r = 5. We overlaid a simulated moving foreground
block on it. The intensity of the moving block was controlled to ensure that q is small.
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