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Abstract—We propose a variable splitting approach for sparse recovery
from incomplete Fourier data, which significantly improves conventional
wavelet-based compressed sensing/reconstruction, offers the benefits of
Shift-invariant Wavelet Transform (SWT), and overcomes the high
redundancy factor of SWT. Our method recovers sparse Discrete Wavelet
Transform (DWT) coefficients of translated version of the signal in
parallel, while enforces consistency between the translated signals via
solving the problem in an ADMM formulation. The experiments demon-
strate that 4 shifts are sufficient to achieve reconstruction accuracy
as high as reconstruction using SWT, hence, significantly reducing the
computational cost and redundancy factor of SWT frame.

I. INTRODUCTION

Effective signal reconstruction from limited number of Fourier
measurements is key to several applications such as medical imaging
(e.g., tomography, MRI), seismic and astronomical imaging, and
radar. Sparse representation in wavelet domain has been extensively
used in compressed sensing research, owing to effectiveness of
wavelet bases in sparsifying natural images. While DWT is effi-
cient in sparse representation of signals, it introduces pseudo-Gibbs
artifacts to the reconstructed image, mostly attributed to its shift-
variant nature [4]. Ideally one replaces DWT with SWT to achieve
translation-invariance; nevertheless, the high redundancy factor of
SWT limits its application in practical settings.

Coifman and Donoho [1] introduced the concept of cycle spinning
for wavelet denoising, in which several shifted versions of the signal
are denoised separately and linearly averaged to obtain the final
(denoised) signal. While cycle spinning is efficient in denoising, since
each shifted signal is tackled separately, there is no guarantee that
resulting signals are consistent (agree with each other and represent
the same signal). Kamilov et al., [2] discussed the inconsistency issue,
proposed a denoising approach for consistent cycle spinning with 1-
level Haar transform, and established its equivalence to total variation
minimization.

In contrast, we propose an approach for sparse signal recon-
struction from limited Fourier data based on variable splitting that
significantly outperforms conventional wavelet-based reconstruction,
guarantees consistency of shifted signal, and overcomes the high
redundancy factor of SWT.

II. CYCLE SPINNING FOR PARTIAL FOURIER RECONSTRUCTION

When a signal in RN is sparse (or compressible) in a dictionary (or
a basis), D, the recovery problem from partial Fourier measurements
can be written as:

argmin
u∈RN

||Du||1 +
µ

2
||FΩu− f ||22, (1)

where FΩ is the Fourier matrix restricted to set of frequencies Ω, and
f ∈ Cn with (n� N) denotes the given data. When the dictionary
D is overcomplete, the problem size grows very large due to high
redundancy factor of the transform. For example, SWT with Haar
wavelet and p levels of decomposition has a redundancy factor of

3p+1 (e.g., for a 256×256 image at full decomposition, redundancy
factor is 25). In this paper, we propose to reformulate (1) as k sparse
approximation problems for obtaining shifted versions of the signal:

argmin
u∈RN

||ΨSiu||1 +
µ

2
||FΩu− f ||22 i = 1 . . . k (2)

where Si is the ith shift operator and Ψ is the DWT matrix. We solve
the k separate problem in (2) simultaneously:

argmin
u∈RN

µk

2
||FΩu− f ||22 + ||ΨS1u||1 + · · ·+ ||ΨSku||1 (3)

This can be solved efficiently using Bregman splitting [3] (as de-
scribed in Algorithm 1):

argmin
θ1,...,θk,u∈RN

µk

2
||FΩu− f ||22 +

k∑
i=1

||θi||1+

+
λ

2

k∑
i=1

||θi −ΨSiu− bθi ||
2
2,

(4)

where bθi (i = 1, . . . , k) denotes the vector of Lagrange multipliers.

Algorithm 1 Variable Splitting with k-Shift Cycle Spinning

Initialize: f0 = f , θ0
1, . . . , θ

0
k = 0,b0

θ1
, . . . ,b0

θk
= 0, t = 0

while ||ut+1 − ut||2 > tol

for l = 1 to L

ut+1 = argmin
u∈RN

µk
2 ||FΩu− f t||22 + λ

2

∑k
i=1 ||θ

t
i −ΨSiu−btθi

||22

θt+1
i = argmin

θi∈RN
||θi||1 + λ

2 ||θi−ΨSiu
t+1−btθi

||22 i = 1, . . . , k

bt+1
θi

= btθi
+ (ΨSiu

t+1 − θt+1
i ) i = 1, . . . , k

f t+1 = f t + f0 −FΩut+1

t← t + 1

return ut

The update step for u is in quadratic form, hence, has a closed
form solution, while updates for θi’s are performed via shrinkage.
We note that we can perform all k updates for θi and bθi in parallel,
which allows for adding more shifts without sacrificing the efficiency
of the approach.

III. RESULTS AND DISCUSSION

Our experiments suggest that the high redundancy factor of SWT
can be overcome via the proposed method, where few number of
shifts suffice to achieve similar accuracy. Fig. 1 shows that our
approach achieves exact reconstruction for Shepp-Logan phantom
at sampling rate as low as 3.06%, while reconstruction with DWT
fails to recover the image. Fig. 2 compares reconstruction with
DWT against SWT and the proposed method with 4 shifts. While
the proposed method offers similar accuracy as SWT, it reduces the
reconstruction time by a factor of 22. A more thorough investigation
of effectiveness of this approach is presented in [5].



(a) SNR: 11.24 dB (b) SNR: 37.24 dB

Fig. 1. Reconstruction of Shepp-Logan phantom of size 256 × 256
from 3.06% of Fourier data (radial sampling in frequency domain):
(a) DWT-based reconstruction, (b) Reconstruction via variable split-
ting with 4 shifts. The proposed approach achieves exact reconstruc-
tion at sampling rate as low as 3.06%, while the ADMM formulation
allows for distributed computation of multiple shifts.

(a) Ground Truth (b) DWT
SNR: 15.95 dB
Time: 3.68 sec

(c) SWT (d) Variable Splitting with 4 shifts
SNR: 22.59 dB SNR: 22.53 dB

Time: 212.68 sec Time: 9.48 sec

Fig. 2. Reconstruction of brain phantom of size 256 × 256 from
9.24% of Fourier data: (a) the ground truth image (b) DWT-based
reconstruction, (c) SWT-based reconstruction (redundancy factor
25). (d) Reconstruction via variable splitting with 4 shifts, shift
set={(0,0),(1,1),(2,2),(3,3)} The proposed approach achieves recon-
struction accuracy similar to reconstruction with sparsity in SWT,
using only 4 shifts, which reduces the reconstruction time from
212.68 seconds down to 9.48 seconds (approximately 22 times
reduction in computational cost)
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