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Abstract—In most real-world applications of compressed sensing uni-
form random sampling is suboptimal [2, 5, 12, 21, 25], however structured
sampling is an effective alternative. In order to obtain satisfactory signal
reconstructions in such applications one need to incorporate both the
signal structure, and the local coherence structure of the change of basis
matrix in the choice of sampling patterns. In this text we will estimate the
local coherences in a change of basis matrix between Hadamard samples
and Daubechies wavelets. These estimates are then combined with newly
obtained uniform recovery guarantees, to create concrete guarantees for
Hadamard sampling combined with Daubechies wavelets.

I. INTRODUCTION

Sparsity alone is typically too general an assumption for many
applications in compressive imaging [1, 4, 14, 16, 23]. Standard
examples range from Magnetic Resonance Imaging (MRI) [15, 17,
18], surface scattering [13], Computerized Tomography (CT), all of
which employ Fourier samples, to fluorescence microscopy [24] and
lensless imaging [26], using binary sampling. For these applications,
when using X-lets, a natural alternative is to consider a sparsity
in levels model [6, 8, 20, 22]. The required number of samples
within each level will then depend on the local sparsity in the level
and the coherence structure between the sampling operator and the
sparsifying operator [3]. In the case of Fourier samples and wavelet
reconstruction this is reasonably well understood, however for binary
sampling, where Hadamard sampling is one of the most natural
sampling operators, this is not the case.

II. MAIN RESULT

Let f P L2
pr0, 1qq be the signal we are trying to recover from the

Hadamard samples xn “ xf, wny, where wn : r0, 1q Ñ t`1,´1u is
the Walsh function. It is this function which generates the rows in a
Hadamard matrix.

Definition II.1 (Walsh function). Let n “ n120
` n221

` ¨ ¨ ¨ , with
ni P t0, 1u be the dyadic expansion of n P N. Similarly let x “
x12´1

` x22´2
` ¨ ¨ ¨ with xi P t0, 1u be the dyadic expansion of

x P r0, 1q. The sequency ordered Walsh function is

wnpxq :“ p´1q
ř8

i“1pni`ni`1qxi

One of the basic problems in compressive sensing [7, 11] is to
design a sampling pattern Ω Ă t1, . . . , Nru with |Ω| “ m such that
by solving

minimizezPCM ||z||1 subject to ||Az ´ y||2 ď η1 ` η2, (1)

where A “ PΩUPM , one gets a good approximation to x “

pxnqnPN P `
2
pNq originating from the noisy inverse problem y “

PΩUx`q. Here U P Bp`2pNqq, ||q||2 ď η1, ||PNrUP
K
Mx|| ď η2 and

PΩ is the projection onto span tej : j P Ωu, where ej is the canonical
basis, PM :“ Pt1,...,Mu and PKM :“ PtM`1,...u In our setup we con-
sider the change of basis matrix Unz “ xwn, ϕzy where tϕzuzPN is

a Daubechies wavelet basis [9, 10, 19] ordered such that any wavelet
at a lower scale precede wavelets at higher scales. We partition the
sampling pattern Ω into r levels N “ rN1, . . . , Nrs P Nr, N0 “ 0.
From each of these levels we draw a set Ωk Ă tNk´1` 1, . . . , Nku

of size |Ωk| “ mk uniformly at random. The mk samples from the
k’th level are then obtained as PΩkx.

Further we assume that the sparsity structure of the signal in the
wavelet domain, i.e. ỹ “ PNrUx, can be partitioned into M “

rM1, . . . ,Mrs P Nr,M0 “ 0, sparsity levels, each of which contains
0 ă sk ď Mk ´Mk´1 non-zero coefficients. We call such a vector
pM, sq-sparse, s “ rs1, . . . , srs, and let Σs,M denote the collection
of all such vectors. In [16] Li and Adcock derived a general uniform
recovery guarantee for (1), whenever U was an isometry on CN . We
have extended this to isometries U on `2pNq solving (1) with

A “

«

1{
?
p1PΩ1

UPM...
1{
?
prPΩrUPM

ff

P CmˆM , pk “
mk

Nk´Nk´1
. (2)

This result relies on the ability to estimate the local coherences of
U . That is

µk,l “ maxt|Uij |
2 : Nk´1 ă i ď Nk,Mk´1 ă j ďMku.

We have estimated these local coherences for the U described above.
This leads to the following theorem.

Theorem II.2. Let Unz “ xwn, ϕzy be an isometry on `2pNq,
where ϕz is a Daubechies wavelet with ν ą 2 vanishing moments.
Let M “ r2J0`1, . . . , 2J0`r

s be sparsity levels (corresponding to
wavelet scales), and N “ r2J0`1, . . . , 2J0`r´1, 2J0`r`p

s, p ě 0,
be sampling levels. Suppose PMrU

˚PNrUPMr “ G˚G is invertible.
Let κpGq be the condition number of G, 0 ă ε ă 1 and
ρ “ maxi,j si{sj . Suppose that the local sampling densities mk

satisfy

mk ěCκpGq
2rρ

˜

r
ÿ

t“1

2´|k´t|st

¸

¨

`

r logp2mq logp2Nrq log2
p2sq ` logpε´1

q
˘

where m “ m1 ` ¨ ¨ ¨ `mr , s “ s1 ` ¨ ¨ ¨ ` sr , and C is a constant
independent of all relevant parameters. Then with probability at least
1´ ε, any minimizer x̂ of (1) with A given by (2) is bounded by

||x̂´ x||1 À σs,Mpxq ` ||G
´1
||2pη1 ` η2q

?
s

where σs,Mpxq “ inft||x ´ z||1 : z P Σs,Mu and η1, η2 are as in
(1).

This gives concrete estimates for the local sampling densities mk

for signal recovery up to a best ps,Mq-term approximation using
Hadamard sampling.
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