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Abstract—In the past decade, sparsity-driven methods have led to sub-
stantial improvements in the capabilities of numerous imaging systems.
While traditionally such methods relied on analytical models of sparsity,
such as total variation (TV) or wavelet regularization, recent methods
are increasingly based on data-driven models such as dictionary-learning
or convolutional neural networks (CNN). In this work, we propose a new
trainable model based on the proximal operator for TV. By interpreting
the popular fast iterative shrinkage/thresholding algorithm (FISTA) as a
CNN, we train the filters of the algorithm to minimize the error over a
training data-set. Experiments on image denoising show that by training
the filters, one can substantially boost the performance of the algorithm
and make it competitive with other state-of-the-art methods.

I. INTRODUCTION

We consider an imaging inverse problem y = Hx + e, where
the goal is to recover the unknown image x ∈ RN from the
noisy measurements y ∈ RM . The matrix H ∈ RM×N is known
and models the response of the acquisition device, while the vector
e ∈ RM represents the unknown noise in the measurements.

Practical imaging inverse problems are often ill-posed [1]. A
standard approach for solving such problems is the regularized least-
squares estimator

x̂ = argmin
x∈RN

{
1

2
‖y −Hx‖2`2 +R(x)

}
, (1)

where R is a regularizer promoting solutions with desirable proper-
ties. One of the most popular regularizers for images is the total
variation (TV) [2], defined as R(x) , τ‖Dx‖`1 , where τ > 0
is parameter that controls the strength of the regularization, and
D : RN → RN×K is the discrete gradient operator. The gradient
can be represented with K separate filters, D , (D1, . . . ,DK),
computing finite-differences along each dimension of the image.

Two common methods for solving the TV regularized problem (1)
are fast iterative shrinkage/thresholding algorithm (FISTA) [3] and
alternating direction method of multipliers (ADMM) [4]. These
algorithms are among the methods of choice for solving large-scale
imaging problems due to their ability to handle the non-smoothness of
TV and their low-computational complexity. Both FISTA and ADMM
typically combine the operations with the measurement matrix with
applications of the proximal operator

proxτR(y) , argmin
x∈RN

{
1

2
‖x− y‖2`2 + τR(x)

}
. (2)

Beck and Teboulle [3] have proposed an efficient dual domain FISTA
for computing TV proximal

st = gt−1 + ((qt−1 − 1)/qt)g
t−2 (3a)

zt = st − γτD(τDTs− y) (3b)

gt = P∞(zt), (3c)

with q0 = 1 and g0 = g−1 = ginit ∈ RN×K . Here, P∞ denotes
a component-wise projection operator onto a unit `∞-norm ball,
γ = 1/L with L = τ2λmax(D

TD) is a step-size, and {qt}t∈N are

relaxation parameters. For a fixed qt = 1, the guaranteed global
convergence speed of the algorithm is O(1/t); however, the choice
qt =

1
2
(1+

√
1 + 4qt−1) leads to a faster O(1/t2) convergence [3].

The final denoised image after T iterations of (3) is obtained as
xT = y − τDTgT .

II. MAIN RESULTS

Our goal is to obtain a trainable variant of (3) by replacing the
finite-difference filters of TV with K adaptable, iteration-dependent
filters. The corresponding algorithm, illustrated in Fig. 1, can be
interpreted as a convolutional neural network (CNN) of a particular
structure with T ×K filters Dt , (Dt1, . . . ,DtK) that are learned
from a set of L training examples {x`,y`}`∈[1,...,L]. The filters can
be optimized by minimizing the error

θ̂ = argmin
θ∈Θ

{
1

L

L∑
`=1

E`(θ)

}
with E(θ) , ‖x− x̂(y;θ)‖2`2 (4)

over the training set, where θ = {Dt}t∈[1,...,T ] ∈ Θ denotes the
set of desirable filters. For the problem of image denoising, end-to-
end optimization can be performed with the error backpropagation
algorithm [5] that produces

[∇E`(θ)]tk =

{
qtk + τ(gTk • (x− x̂)) for t = T
qtk for 1 ≤ t ≤ T − 1,

using the following iteration for t = T, T − 1, . . . , 1,

vt−1 = diag
(
P ′∞(zt)

)
rt (5a)

bt−1 = vt−1 − γτ2DtD
T
tv

t−1 (5b)

rt−1 = µtb
t−1 + (1− µt+1)b

t (5c)

qtk = γτ [(vt−1
k • (y − τDT

t s
t))− τ(stk • (DT

tv
t−1))] (5d)

where • denotes filtering, µt = 1− (1− qt−1)/qt, bT = 0, and
rT = τDT (x− x̂). The parameters are update iteratively with the
standard stochastic gradient method as θ ← θ − α∇E`(θ).

We applied our method to image denoising by training T = 10
iterations of the algorithm with K = 9 iteration dependent kernels
of size 6× 6 pixels. For taining, we used 400 images from Berkeley
dataset [6] cropped to 192× 192 pixels. We evaluated the algorithm
on 68 separate test images from the dataset and compared the results
with three popular denoising algorithms (see Table I and Fig. 2–3).
Our basic MATLAB implementation takes 0.69 and 3.27 seconds
on images of 256 × 256 and 512 × 512 pixels, respectively, on an
Apple iMac with a 4 GHz Intel Core i7 processor. We observe that
our simple extension of TV significantly boosts the performance of
the algorithm and makes it competitive with state-of-the-art denoising
algorithms. The algorithm can be easily incorporated into FISTA and
ADMM for solving more general inverse problems. Future work will
address such extensions and further improve the performance by code
optimization and considering more kernels. More generally, our work
contributes to the recent efforts to boost the performance of imaging
algorithms by incorporating latest ideas from deep learning [7]–[13].
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Fig. 1. A schematic representation of the trainable variant of (3) with
adaptable parameters, Wt , I− γτ2DtDT

t and bt , γτDty, marked in
blue. (a) The algorithm for T = 3 iterations with θt , Dt. (b) The schematic
view of a single iteration where µt = 1− (1− qt−1)/qt. (c) The plot of the
scalar nonlinearity P∞.

TABLE I
AVERAGE PSNR ON 68 IMAGES FROM THE BERKELEY DATASET.

Noise level Proposed TV [3] K-SVD [14] BM3D [15]

σ = 15 30.77 dB 29.91 dB 30.89 dB 31.08 dB
σ = 30 27.53 dB 26.69 dB 27.44 dB 27.76 dB
σ = 45 25.80 dB 24.99 dB 25.61 dB 25.98 dB
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Original Noisy: 18.59 dB TV: 25.36 dB

K-SVD: 25.81 dB BM3D: 25.81 dB Proposed: 26.23 dB

Fig. 2. Comparison of four denoising algorithms on Firefighter (image
no. 285079) from the Berkeley dataset at noise level σ = 30. The values
in the bottom-left corner correspond to PSNR in dB.

Original Noisy: 18.59 dB TV: 25.36 dB

K-SVD: 25.81 dB BM3D: 25.81 dB Proposed: 26.23 dB
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Proposed: 30.05 dBK-SVD: 29.86 dB BM3D: 29.90 dB

Fig. 3. Comparison of four denoising algorithms on Desert (image
no. 19021) from the Berkeley dataset at noise level σ = 15. The values
in the bottom-left corner correspond to PSNR in dB.

Fig. 4. Visual illustration of all the filters learned for σ = 30. Leftmost
column shows all the filters of the first iteration, while rightmost column
of the last iteration. Note the close resemblance of some filters to various
differential operators.


