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Motivation. Hyperspectral remote sensing imagery provides valuable
insights regarding the composition of a scene and significantly
facilitates tasks such as object and material recognition, spectral
unmixing, and region clustering [1], [2]. However, current remote
sensing imaging architectures are unable to concurrently acquire high
spatial and spectral resolution imagery due to fact that the three-
dimensional hyperspectral data must be acquired using a single, a
1D array, or a 2D plane detector.

Traditional “push-broom” sensors obtain a high spectral resolution
profile of a low spatial resolution area (single line) during each
exposure and generate the complete hyperspectral cube by progressive
scanning of the scene. Modern Snapshot Spectral Imaging architec-
tures sample the full spatio-spectral cube in a single exposure, without
any need for successive frame acquisition, by associating each pixel
with a specific spectral band. Even for the same type of sensor,
a different point in the spatio-spectral operational curve might be
selected depending on the application.

We report herein on a novel machine learning method for post-
acquisition enhancement of multi and hyperspectral imagery. Exam-
ple applications include imagery acquired from legacy low spectral
resolution satellites, which could be enhanced using images of the
same region, acquired by high resolution spectrometers aboard newer
platforms. Respectively, the limited spatial information acquired
by hyperspectral instruments, could be enhanced using high-spatial
resolution imagery extracted by sensors with higher spatial resolution.

Proposed approach. In contrast to traditional hyperspectral super-
resolution approaches that focus either on the spatial [3] or the
spectral resolution enhancement [4], we propose a novel technique
which addresses the spatio-spectral enhancement, where pairs of low
and high spatio-spectral resolution training examples are used within
a sparsifying dictionary learning framework. The proposed multi-
instrument Coupled Dictionary Learning (CDL) technique capitalizes
on the Sparse Representations framework [5] and extents it by
introducing an efficient multi-source dictionary learning scheme, for
estimating spatial and spectral information that was not explicitly
acquired by the detectors. The CDL algorithm relies on generating
coupled dictionary pairs that jointly encode two feature spaces, the
low-spectral/high-spatial and the corresponding high-spectral/low-
spatial resolution ones, where signals admit sparse representations.
Multi-source dictionary learning can be formulated as the concur-
rent identification of two dictionary matrices Dx, D, corresponding
to the feature spaces Sx and Sy, such that both sx € Sx and
sy € Sy share exactly the same sparse coding in terms of Dx
and D+, respectively. A straightforward approach is to convert the
joint dictionary learning into a standard single dictionary learning
problem by concatenating the individual feature spaces and utilize
a common sparse representation, able to reconstruct both spaces.
This problem can be efficiently solved via the K-SVD algorithm [6].
However, such a strategy is optimal only in the concatenated feature
space, and not in the individual signal resolutions of Sx and Sy.

In other words, when presented only with examples from Sy, the
corresponding generated dictionary D3, admits different space coding
compared to the concatenated case. Although one could consider only
the low-resolution part of a learned dictionary, no constraints on the
optimality of the identified sparse codes exist when high-resolution
signals are considered. To overcome this limitation, we propose a
computationally efficient CDL technique, based on the Alternating
Direction Method of Multipliers (ADMM) [7]. The main task of the
ADMM coupled dictionary learning is to recover both the dictionaries
with their corresponding sparse codes, by solving the following sparse
decomposition problem:
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where Ax, Ay are the sparsity balancing terms. The ADMM scheme
takes into account the separate structure of each variable in (1),
relying on the minimization of its augmented Lagrangian function:
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where Y1, Y2, and Y3 denote the Lagrange multiplier matrices,
while c1,c2,c3 denote the non-negative step size parameters. Fol-
lowing the general algorithmic strategy of the ADMM scheme, we
seek for the stationary point, solving iteratively for each one of the
variables, while keeping the others fixed. Once the dictionaries are
learned, a similar algorithmic strategy to the one described in [4]
is employed for estimating the high resolution hyper-pixels. An
illustrative block-diagram is depicted in Figure 1 which demonstrates
how acquired data from two different sensors can be enhanced
utilizing the proposed multi-instrument CDL approach.

Experimental Validation. To validate the merits of the proposed
scheme, we report its performance when applied for the spectral
super-resolution of hyperspectral data acquired by NASA’s AVIRIS
sensor [8], resolving 224 spectral bands between 400 and 2500 nm.
Specifically, 20.000 randomly selected training hyper-pixels, from
5 training AVIRIS hyper-cubes are considered as the high reso-
Iution measurements. The low-spectral resolution hypercubes were
produced via a uniform spectral response sampling corresponding to
Landsat TM spectral bands [9]. Specifically, we have experimented
with spectral sub-sampling factors of 2,4, 8, and 16, corresponding
to 112, 56, 28 and 14 input spectral bands. Additionally, we in-
vestigated the extreme scenario of only 6 input spectral observations.
Figures 2 and 3 illustrate representative bands from the reconstructed
hypercubes obtained by the proposed enhancement technique.
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Fig. 1: Proposed Block Diagram: Our algorithm takes as input a 3D data-cube acquired with a limited spatial resolution from Platform A, and utilizes
the high-spatial resolution trained model from Platform B, to increase spatial resolution. Respectively, the high-spectral resolution learned model
from Platform B is utilized as prior knowledge to enhance the limited spectral information of Platform A.
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Fig. 2: AVIRIS scene reconstruction: The full spectrum is composed of 224 bands between 400 and 2500 nm. In this experiment, we evaluate the
performance of the proposed technique against multiple spectral down-sampling factors: (x2),(x4),(x8),(x16). The reconstruction quality of the full
spectrum is evaluated via the Peak Signal to Noise Ratio (PSNR) [10]. We observe that under real life conditions, the proposed scheme produces a
significant quality improvement operating in satellite hyperspectral imagery.
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