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Abstract—This paper provides lower bounds on the sample complexity
of estimating Kronecker-structured dictionaries for Kth-order tensor
data. The results suggest the sample complexity of dictionary learning for
tensor data can be significantly lower than that for unstructured data.

I. INTRODUCTION

Dictionary learning (DL) is a powerful feature learning technique
that enables sparse representations of data and facilitates subsequent
processing [1], [2]. DL involves construction of an overcomplete
basis, D, from input training data such that each data sample can
be described by a small number of columns of D. In the modern era
of cheap and ubiquitous sensing, much of today’s real-world data is
being collected in a multi-modal manner. The collected data in this
case has a tensor structure, defined as a multiway array [3]. Because
of the inherent correlation across multiple dimensions of tensor data,
it is important to explicitly account for the tensor structure within
data-driven feature learning. The traditional DL literature, however,
often ignores the tensor structure and resorts to conversion of multidi-
mensional data into one-dimensional samples through vectorization of
training data. Since such approaches ignore the tensor data structure,
they result in sub-optimal sparse representations.

In this paper, we consider Kronecker-structured (KS) dictionaries
that account for the tensor structure of data and provide lower bounds
on the minimax risk of estimating KS dictionaries from tensor data
using any estimator. These bounds not only help us understand
potential advantages of explicitly accounting for the tensor structure
of data in DL algorithms, but they also help quantify the performance
of existing KS-DL algorithms [4], [5]. In particular, we show that
reliable estimation of a dictionary that is the Kronecker product of
K coordinate dictionaries (and thus represents Kth-order tensor data)
requires the number of samples to scale linearly with the sum of the
product of the dimensions of the coordinate dictionaries.

II. PROBLEM FORMULATION

According to the Tucker decomposition [6], we can model a tensor
observation Y ∈ Rm1×···×mK as vec(Y) =

(⊗K
k=1 Dk

)
vec(X)+

vec(N), where X ∈ Rp1×···×pK denotes the random coefficient
tensor with a known zero-mean distribution with covariance matrix
Σx, {Dk ∈ Rmk×pk}Kk=1 are the coordinate dictionaries (fac-
tor matrices), N = Rm1×m2×···×mK denotes the additive white
Gaussian noise tensor with zero mean and variance σ2, and

⊗
denotes the Kronecker product [7]. Note that while the tensor
observations are being vectorized in this setup, their structure is
being preserved through the KS dictionary. We assume that the
unknown KS dictionary, D ∈ Rm×p =

⊗K
k=1 Dk, m =

∏K
k=1mk,

p =
∏K
k=1 pk, has unit norm columns and belongs to a local

neighborhood around a reference KS dictionary D0 with unit norm
columns, i.e., ‖D−D0‖F < r. Given N tensor observations,
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concatenating the vectorized observations and coefficient tensors into
matrices Y and X, our goal is to lower bound the minimax risk of
estimating D based on Y, defined as the worst-case mean squared
error that can be obtained by the best KS dictionary estimator D̂(Y):

ε∗ = inf
D̂

sup
‖D−D0‖<r

EY

{∥∥D̂(Y)−D
∥∥2
F

}
. (1)

For this purpose, we use a standard reduction to the multiple
hypothesis testing problem [8]. We construct a set of L distinct
KS dictionaries with unit-norm columns such that any two distinct
dictionaries are separated by some distance that is a function of
the desired error. We then use Fano’s inequality [9], which requires
an upper bound on the mutual information between Y and the
true dictionary index l ∈ {1, . . . , L}. Since evaluating I(Y; l) is
challenging, we assume the decoder/estimator has access to some
side information (SI) [10] T(X) such that the conditional distribution
of Y becomes multivariate Gaussian and we then upper bound the
conditional mutual information I(Y; l|T(X)) by upper bounding the
Kullback–Leibler (KL) divergence between multivariate Gaussians.

III. RESULTS AND DISCUSSION

Table I compares lower bounds on the minimax rates for various
coefficient distributions when one ignores the tensor structure [10]
and this work. The bounds are given in terms of tensor order K, coor-
dinate dictionary size parameters (mk’s and pk’s), number of samples

N , and SNR, which is defined as SNR =
Ex{‖x‖22}
En{‖n‖22}

= Tr(Σx)

mσ2 .

These scaling results hold for sufficiently large p and neighborhood
radius r. Compared to the results for the unstructured dictionary
learning problem [10], we decrease the lower bound for various
coefficient distributions by reducing the scaling Ω(

∏
k∈[K]mkpk) to

Ω(
∑
k∈[K]mkpk), which is the number of degrees of freedom in a

KS dictionary. The risk decreases with larger N and K; in particular,
larger K for fixed mp means more structure, which simplifies the
estimation problem. The results for “general coefficient” distribution
in the first row of Table I are obtained using SI T(X) = X
and show that the minimax risk scales like 1/ SNR. In the second
row, we assume the coefficients are strictly sparse and the non-zero
entries follow a Gaussian distribution. In this case, we can obtain
the minimax lower bound using less SI, T(X) = supp(X), where
supp(X) denotes the indices of non-zero entries of X; nonetheless,
we do require here that the reference coordinate dictionaries satisfy
the restricted isometry property [11], RIP(s, 1/2), where s denotes
the sparsity level of coefficients. This additional assumption of
RIP introduces the factor of 1/34K in the minimax lower bound.
Nevertheless, the minimax lower bound is tighter for sparse Gaussian
coefficients than for general coefficients in some SNR regimes.

We conclude by noting that while our analysis is local, our derived
lower bounds for the minimax risk effectively become independent
of this constraint for sufficiently large neighborhood radius. We refer
the readers to [12] for full version of this work.



Coefficient Distribution

Dictionary Structure Side Information
T(X)

Unstructured Dictionary [10] KS Dictionary (this work)

1. General Coefficients X
σ2mp

N‖Σx‖2

σ2(
∑
k∈[K]mkpk)

NK‖Σx‖2

2. Gaussian Sparse Coefficients supp(X)
p2

NmSNR2

p(
∑
k∈[K]mkpk)

34KNm2 SNR2

TABLE I: Order-wise lower bounds on the minimax risk for various coefficient distributions.
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