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Abstract—We study a novel sparse signal recovery framework called
DeepInverse that learns the inverse transformation from measurement
vectors to signals using a deep convolutional network. We compare
DeepInverse with `1-minimization from the phase transition point of
view and demonstrate that it outperforms `1-minimization in the regions
of phase transition plot where `1-minimization cannot recover the exact
solution.

I. INTRODUCTION

Sparse recovery is the problem of estimating a sparse signal x ∈
RN from a set of undersampled linear random measurements y =
Φx ∈ RM , where Φ is an M ×N measurement matrix. By sparse,
we mean that x = Ψs, where Ψ is a basis and only K � N of
the coefficients s are nonzero. An alternative to the NP-hard, `0-
minimization of finding the sparsest signal x̂ such that y = Φx̂ is
the convex-relaxed, `1-minimization min ‖x̂‖1, s.t. y = Φx̂ [1], [2].

The price we pay for using `1-minimization instead of `0-
minimization is reduced recovery performance, namely that `1-
minimization requires more measurements M to recover a K-sparse
signal than `0-minimization. Let δ = M

N
denote the undersampling

ratio and let ρ = K
M

indicate the normalized sparsity level. The two-
dimensional phase transition plot (δ, ρ) ∈ [0, 1]2 has two phases: a
success phase and a failure phase, where `1-minimization can and
cannot recover the exact signal, respectively. In other words, `1-
minimization successfully recovers the sparse signal if its normalized
sparsity level is less than a certain threshold. Figure 2 displays a
typical phase transition plot for `1-minimization [3].

In this paper, we study a novel signal recovery framework we call
DeepInverse in the context of sparse recovery. DeepInverse learns the
inverse transformation from measurement vectors y to signals x using
a deep convolutional network. When the network is trained on a set
of sparse signals, it learns both a representation for the signals and an
inverse map from measurement vectors to sparse signals. Compared
to `1-minimization, our experiments below indicate that DeepInverse
offers better sparse signal recovery performance for signals whose
normalized sparsity is significantly larger than the threshold imposed
by the `1-minimization phase transition. In other words, DeepInverse
has better performance than `1-minimization on the failure side of `1
phase transition. Furthermore, our experiments show that DeepInverse
can recover signals from measurement vectors tens of times faster
than conventional sparse recovery algorithms. The tradeoff for the
ultrafast run time is a one-time, computationally intensive, off-line
training procedure typical to deep networks. This makes our approach
applicable for real-time sparse recovery problems.

II. DEEPINVERSE FRAMEWORK

In this section we briefly describe the DeepInverse framework [4]
for sparse signal recovery (see Figure 1) . DeepInverse takes as input
a set of measurements y in RM and outputs the signal estimate
x̂ in RN . To increase the dimensionality of the input from RM to
RN , we apply the adjoint operator Φᵀ in the first layer. To preserve

the dimensionality of the processing in RN , we dispense with the
downsampling max-pooling operations made popular in modern deep
convolutional networks (DCNs) [5]. We assume that the measurement
matrix Φ is fixed. Therefore, each yi (1 ≤ i ≤ M ) is a linear
combination of xjs (1 ≤ j ≤ N ). By training a DCN, we learn a
nonlinear mapping from the signal proxy x̃ = Φᵀy to the original
sparse signal x.

Among the many possibilities for the deep network architecture,
we use one layer to implement the adjoint operator Φᵀ and five
convolutional layers with their corresponding batch normalization [6]
layers. Each convolutional layer applies a leaky-ReLU [7] nonlin-
earity to its output. The i-th entry of the t-th feature map in the
first convolutional layer receives the signal proxy x̃ as its input and
outputs (xc1)ti = S(L-ReLU((Wt

1∗x̃)i+(bt
1)i)), where Wk

1 ∈ RP

and bk
1 ∈ RN+P−1 denote the filter and bias values corresponding

to the t-th feature map of the first layer and L-ReLU(x) = x if
x > 0 and = 0.01x if x ≤ 0. Finally, the subsampling operator S(·)
takes the output of L-ReLU(·) to the original signal size by ignoring
the borders created by zero-padding the input. The feature maps for
the other convolutional layers are processed in a similar manner. If
we denote the set of weights and biases in the DCN by Ω, then
we can define a nonlinear mapping from the measurements to the
original signal by x̂ = M(y,Ω). To learn the weights and biases,
we employ backpropagation algorithm to minimize the mean-squared
error (MSE) of the estimate x̂.

III. EXPERIMENTS

We now compare the performance of DeepInverse to the LASSO
[8] `1 solver (implemented using the coordinate descent algorithm of
[9]) over a grid of regularization parameters. In all the experiments,
we assume that the optimal regularization parameter of LASSO is
given by an oracle. Our DeepInverse network has five layers. The
first and third layers have 32 filters, each having 1 and 16 channels of
size 125, respectively. The second and fourth layers have 16 filters,
each having 32 channels of size 125. The fifth layer has 1 filter
that has 16 channels of size 125. We trained and tested DeepInverse
using wavelet sparsified versions of 1D signals of size N = 512
extracted from random rows of CIFAR-10 images [10]. The training
set contains 100,000 signals, and the test set contains 20,000 signals.
The circles in Figure 2 denote the problem instances, i.e., (δ, ρ), on
which we compare DeepInverse with the LASSO. By design, these
problem instances are on the “failure” side of the `1 phase transition.

Table I shows the average normalized mean squared error (NMSE)
and the average recovery time for the test set signals using both
methods. DeepInverse outperforms LASSO (with the optimal regular-
ization parameter) in all of the configurations determined in Figure 2.
Figure 3 shows examples of signal recoveries using DeepInverse and
LASSO. Finally, Figure 4 plots the MSE of DeepInverse in different
training epochs.
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Fig. 1: DeepInverse learns an approximate inverse transformation from measurement vectors y to signals x using a deep convolutional
network.
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Fig. 2: `1 sparse recovery phase transition. The circles denote our test
configurations, which are all on the “failure” side of the transition.
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Fig. 3: Example signals recovered by DeepInverse and LASSO (with
optimal regularization parameter).

TABLE I: Average NMSE and recovery time (in ms) of test set
signals. DeepInverse outperforms LASSO in all cases.

(δ, ρ)
NMSE Time (ms)

DeepInverse LASSO DeepInverse LASSO
(0.1,0.28) 0.0094 0.0428 3 27.4
(0.3,0.42) 0.0140 0.0466 3 67.5
(0.5,0.56) 0.0112 0.0312 3 45.1
(0.7,0.72) 0.0104 0.0164 3 57.2
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DeepInverse outperforms
LASSO (with optimal
regularization parameter)
after 138 training epochs.
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Fig. 4: Test MSE of DeepInverse during training epochs for (δ, ρ) =
(0.7, 0.72). DeepInverse outperforms LASSO after only 138 epochs.
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