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Bayesian Learning

• According to the Bayesian path to machine learning, the unknown
set of parameters are treated as random variables instead of a set
of fixed (yet unknown) values.

• This was a revolutionary idea, at the time it was used by Laplace.
Even now, after more than two centuries, it may seem strange to
assume that a physical phenomenon/mechanism is controlled by a
set of random parameters.

• However, there is a subtle point here.
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Bayesian Learning

• A set of random parameters, θ, does not really imply a random
nature for them.

• The associated randomness, in terms of a prior distribution, p(θ),
encapsulates our uncertainty about their values, prior to
receiving any measurements/observations.

• Put it in another way, the prior distribution represents our belief
about the different possible values, although only one of them is
actually true. From this perspective, probabilities are viewed in a
more open-minded way, i.e, as measures of uncertainty.
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Bayesian Learning

• Recall that parameter learning from data is an inverse problem.
Basically, all we do is to deduce the “causes” (parameters) from
the “effects” (observations).

• Bayes’ theorem can be seen as such an inversion procedure
expressed in a probabilistic context. Indeed, given the set of
observations, say, Xo, which are controlled by the unknown set of
parameters, we write:

p(θ|Xo) =
p(Xo|θ)p(θ)

p(Xo)
.

• All is needed for the above inversion is to have a guess about
p(θ).
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Bayesian Learning

• This term p(θ) has brought a lot of controversy. However, once a
reasonable guess of the prior is available, a number of advantages
associated with the Bayesian approach emerge, compared to the
deterministic approaches, usually referred to as frequentist
techniques.

• The term frequentist comes from the more classical view of
probabilities as frequencies of occurrence of repeatable events.

• A typical example of this family of methods is the maximum
likelihood approach, which estimates the values of the parameters
by maximizing p(Xo|θ); its value is solely controlled by the
obtained observations in a sequence of experiments.
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Regression: A Probabilistic Perspective

• Let us consider the (generalized) linear regression task, i.e.,

y = θTφ(x) + η = θ0 +

K−1∑
k=1

θkφk(x) + η,

where y ∈ R is the output random variable, x ∈ Rl is the input random
vector, η ∈ R is the noise disturbance, θ ∈ RK is the unknown
parameter vector and

φ(x) := [φ1(x), . . . , φK−1(x), 1]T

where φk(·), k = 1, . . . ,K − 1, are some (fixed) basis functions. We
are given a set of N training points, (yn,xn), n = 1, 2, . . . , N .

• We assume that the respective (unobserved) noise samples,
ηn, n = 1, 2, . . . , N, correspond to a jointly Gaussian pdf with
covariance matrix Ση, i.e.,

p(η) =
1

(2π)N/2|Ση|1/2
exp

(
−1

2
ηTΣ−1

η η

)
.
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The Maximum Likelihood Method

• According to the ML method, the unknown parameter is treated
as a deterministic variable θ, which parameterizes the pdf
describing the output vector of observations,

y = Φθ + η,

where

Φ =


φT (x1)
φT (x2)

...
φT (xN )

 , and y = [y1, y2, . . . , yN ]T .

• Thus, p(η) = p(y − Φθ). Optimizing p(η), w.r. to θ, the ML
estimate results as,

θ̂ML =
(
ΦTΣ−1

η Φ
)−1

ΦTΣ−1
η y.
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The Maximum Likelihood Method

• For the simple case of a white noise sequence of variance σ2
η

(Ση = σ2
ηI), we get the LS solution,

θ̂ML =
(
ΦTΦ

)−1
ΦTy = θ̂LS.

• A major drawback of the ML approach is that it is vulnerable to
overfitting, since no care is taken for complex models that try
to“learn” the specificities of the particular training set.
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The MAP Estimator: A Revision

• According to the MAP, the unknown set of parameters are treated as a
random vector, θ, and its posterior, for a given output set of
observations, y, is expressed as

p(θ|y) =
p(y|θ)p(θ)

p(y)
,

where p(θ) is the associated prior pdf. The notation has been relaxed
on the the dependence on X , in order to make it look simpler. The
input set, X = {x1, . . . ,xN}, is considered fixed, so all the randomness
associated with y is due to the noise source.
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where p(θ) is the associated prior pdf. The notation has been relaxed
on the the dependence on X , in order to make it look simpler. The
input set, X = {x1, . . . ,xN}, is considered fixed, so all the randomness
associated with y is due to the noise source.

• Assuming both the prior as well as the conditional pdfs to be Gaussians,
i.e.,

p(θ) = N (θ|θ0, Σθ) and p(y|θ) = N (y|Φθ, Ση),

the posterior p(θ|y) turns out also to be Gaussian with mean vector,

µθ|y := E[θ|y] = θ0 +
(
Σ−1
θ + ΦTΣ−1

η Φ
)−1

ΦTΣ−1
η (y − Φθ0) .
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The MAP Estimator: A Revision

• According to the MAP, the unknown set of parameters are treated as a
random vector, θ, and its posterior, for a given output set of
observations, y, is expressed as

p(θ|y) =
p(y|θ)p(θ)

p(y)
,

where p(θ) is the associated prior pdf. The notation has been relaxed
on the the dependence on X , in order to make it look simpler. The
input set, X = {x1, . . . ,xN}, is considered fixed, so all the randomness
associated with y is due to the noise source.

• Since in the MAP, we are only interested in the maximum, for a
Gaussian this coincides with its mean, and we have that

θ̂MAP = E[θ|y].
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The Prior PDF Acts As A Regularizer

• Treating the parameters as random variables, regularization is
achieved via θ0 and Σθ, which are imposed by the prior p(θ).

• We can verify it by establishing a bridge with the ridge regression.
Let us assume that Σθ = σ2

θI, Ση = σ2
ηI and θ0 = 0. Then the

previous formula becomes,

θ̂MAP =
(
λI + ΦTΦ

)−1
ΦTy,

where we have set λ :=
σ2
η

σ2
θ

. This is the same as the solution

resulting from the ridge regression, i.e.,

J(θ, λ) = ‖y − Φθ‖2 + λ‖θ‖2.
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The Prior PDF Acts As A Regularizer

• Choosing the value of λ is critical to the performance of the
estimator. The main issue now becomes how to choose a good
value for λ, or equivalently for Σθ, Ση in the more general case.

• In practice, the cross-validation method is adopted; different
values of λ are tested and the one that leads to the best MSE (or
some other criterion) is selected.

• This is a computationally costly procedure. Note that
cross-validation requires the use for training of only a fraction of
the available data, so that to reserve the rest for testing.
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The Bayesian Approach

• In the Bayesian approach, all the involved parameters can be
estimated on the training set. In this vein, the parameters will be
treated as random variables.

• At the same time, the goal now becomes to infer the pdf, that
describes the unknown set of parameters, instead of obtaining a
single vector estimate of parameters.

• Thus, one has more information at his/her disposal. Having said
all that, it does not mean that Bayesian techniques are necessarily
free from cross-validation; this is needed to assess their overall
performance.
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The Bayesian Approach

• The starting point is the same as that for MAP, that is,

p(θ|y) =
p(y|θ)p(θ)

p(y)
.

• However, instead of taking just the maximum of the numerator,
we will make use of p(θ|y) as a whole. As a matter of fact, most
of the secrets lie in the denominator, p(y), which is basically the
normalizing constant,

p(y) =

∫
p(y|θ)p(θ)dθ.
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The Bayesian Approach

• The difficulty with p(y) is that, in general, the evaluation of the
corresponding integral cannot be performed analytically. In such
cases, one has to resort to approximate techniques. To this end, a
number of techniques are available. Various alternatives for the
computation of this integral are:
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The Laplacian approximation method.
The variational approximation method.
The variational bound approximation method.
Monte Carlo techniques for the evaluation of the integral.
Message passing algorithms in the context of probabilistic
graphical models.
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The Bayesian Approach

• The difficulty with p(y) is that, in general, the evaluation of the
corresponding integral cannot be performed analytically. In such
cases, one has to resort to approximate techniques. To this end, a
number of techniques are available. Various alternatives for the
computation of this integral are:

• As a first step, we will assume that p(y|θ) and p(θ) are both
Gaussians. Such an assumption renders p(y) to be also a
Gaussian one, and it can be evaluated analytically.
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The Bayesian Approach to Regression: The Full Gaussian Case

• Assuming that the prior and the conditional are Gaussians, i.e.,

p(θ) = N (θ|θ0, Σθ) and p(y|θ) = N (y|Φθ, Ση),
it turns out that:

The normalizing constant is given by,

p(y) = N
(
y|Φθ0, Ση + ΦΣθΦ

T
)
. (1)

The resulting posterior pdf is also Gaussian, i.e.,

p(θ|y) = N
(
θ|µθ|y, Σθ|y

)
, (2)

where µθ|y is given as in the MAP estimator,

µθ|y = θ0 +
(
Σ−1
θ + ΦTΣ−1

η Φ
)−1

ΦTΣ−1
η (y − Φθ0) ,

and the corresponding covariance matrix is equal to,

Σθ|y =
(
Σ−1
θ + ΦTΣ−1

η Φ
)−1

.
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The Bayesian Approach to Regression: The Full Gaussian Case

• The posterior pdf provides our knowledge about θ, after the
observations y have been obtained. Hence, our uncertainty about
θ has been reduced.

• This explains why the posterior is different to the prior pdf; the
latter represents only our initial guess. The covariance matrix of
the posterior provides information about our uncertainty w.r. to
θ.
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Regression: Inference On The Output Variable Directly

• Recall that the ultimate goal of a regression model is to predict
the output value, ŷ, given the corresponding value of the input
vector, x. The Bayesian philosophy provides the means for a
direct inference of the output variable.

• In such cases, estimating a value for the unknown θ is only the
means to an end. To formulate the prediction task directly,
without involving θ, one has to integrate out the contribution of
θ.
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Regression: Inference On The Output Variable Directly

• Having learned the posterior p(θ|y), then given a new input
vector x, the conditional pdf of the output variable, y, given the
set of observations, y, is written as,

p(y|x,y) =

∫
p(y|x,θ)p(θ|y)dθ. (3)

Note that we have written p(y|x,y,θ) = p(y|x,θ) since y is
conditionally independent of y given the value of θ. Strictly
speaking, the posterior should have been denoted as p(θ|y;X ) to
indicate the dependence on the input training samples. However,
the dependence on X has been suppressed to unclutter notation.
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Regression: Inference On The Output Variable Directly

• In order to simplify algebra and focus on the concepts, assume that that
Ση = σ2

ηI. Also for the prior pdf, Σθ = σ2
θI. Then, the conditional of

the output variable takes the form,

p(y|x,θ) = N (y|θTφ(x), σ2
η).

• Also, the mean and covariance matrix of the respective (Gaussian)
posterior are simplified to,

µθ|y = θ0 +
1

σ2
η

(
1

σ2
θ

I +
1

σ2
η

ΦTΦ

)−1

ΦT (y − Φθ0) , (4)

Σθ|y =

(
1

σ2
θ

I +
1

σ2
η

ΦTΦ

)−1

. (5)
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Regression: Inference On The Output Variable Directly

• Plugging the above in (3), results in

p(y|x,y) = N
(
y|µy, σ2

y

)
,

where

µy = φT (x)µθ|y, σ
2
y = σ2

η+σ2
ησ

2
θφ

T (x)
(
σ2
ηI + σ2

θΦ
TΦ
)−1

φ(x).
(6)

• Hence, given x, one can predict the respective value of y using
the most probable value, i.e., µy. Note that the same prediction
value would result via the MAP estimate if θ0 = 0. Have we then
gained anything extra by adopting the Bayesian approach? YES!

• More information concerning the predicted value is now available,
since we have an estimate of the respective variance, which
quantifies the associated uncertainty of the prediction.
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Regression: Inference On The Output Variable Directly

• To investigate our task further, let us simplify it via the following
approximation, in terms of the autocorrelation matrix of φ(x),
Rφ, i.e.,

Rφ := E[φ(x)φT (x)] ' 1

N

N∑
n=1

φ(xn)φT (xn) =
1

N
ΦTΦ,

or
ΦTΦ ' NRφ.

• Plugging this approximation into the variance formula, readily
results in

σ2
y ' σ2

η

(
1 + σ2

θφ
T (x)

(
σ2
ηI +Nσ2

θRφ
)−1

φ(x)
)
,

which for large values of N becomes

σ2
y ' σ2

η

(
1 +

1

N
φT (x)R−1

φ φ(x)

)
.
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Regression: Inference On The Output Variable Directly

• Thus, for a large number of observations, σ2
y → σ2

η, and our
uncertainty is contributed by the noise source, which cannot be
reduced further. For smaller values of N , there is extra
uncertainty, which is associated with the parameter θ, measured
by σ2

θ .
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Regression: Inference On The Output Variable Directly

• So far, we dealt with Gaussians, which led to tractable and
analytically computed integrals. Moreover, even in the case of
Gaussian pdfs, we have assumed the covariance matrices Σθ, Ση
to be known. In practice, they are not. Can one select the related
parameters via an optimization process?
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Regression: Inference On The Output Variable Directly

• If the answer is yes, can this optimization be carried out on the
training set, or one would necessarily run into problems similar to
the ones we faced with the regularization approach? We will
indulge in all these challenges soon.
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Example on Bayesian Regression

• In this example, we focus on inferring the output directly, after
integrating out the parameters. The simplified full Gaussian case will be
considered. Data are generated based on the following nonlinear model,

yn = θ0 + θ1xn + θ2x
2
n + θ3x

3
n + θ5x

5
n + ηn, n = 1, 2, . . . , N,

where ηn are samples i.i.d. drawn form a zero mean Gaussian with
variance σ2

η. Samples xn are equidistant points in the interval [0, 2].
The goal of the task is to predict the value y given a measured value x,
using (6). The parameter values used to generate the data were equal
to,

θ0 = 0.2, θ1 = −1, θ2 = 0.9, θ3 = 0.7, θ5 = −0.2.

• I) In the first set of experiments, a Gaussian prior for the unknown θ
was used with mean θ0 equal to the previous true set of parameters and
Σθ = 0.1I. Also, the true model structure was used to construct the
matrix Φ. The following figures provide the graphical illustration of the
obtained simulation results.
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Example on Bayesian Regression

(a) (b)

Each one of the red points, (y, x), indicates the prediction (ŷ) corresponding to the input value, x. The error bars are

dictated by the computed variance, σ2
y . The mean values used in the Gaussian prior are equal to the true values of the

unknown model. (a) σ2
η = 0.05, N = 20, σ2

θ = 0.1. (b) σ2
η = 0.05, N = 500, σ2

θ = 0.1.

Sergios Theodoridis, University of Athens. Machine Learning, 24/152



Example on Bayesian Regression

(a) (b)

Each one of the red points, (y, x), indicates the prediction (ŷ) corresponding to the input value, x. The error bars are
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θ = 0.1.

σ2
η = 0.15, N = 500, σ2

θ = 0.1. Observe that the larger the data set is the better the predictions are and the larger

the noise variance is the larger the error bars become.
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Example on Bayesian Regression

• II) In the second set of experiments, we kept the correct model,
however, the mean of the prior was given a different value to that of the
true model, namely: θ0 = [−10.54, 0.465, 0.0087,−0.093,−0.004]T .

(a) (b)

(c)

In this set of figures, the mean values of the prior are different than that of the true model. (a) σ2
η = 0.05,

N = 20, σ2
θ = 0.1. (b) σ2

η = 0.05, N = 20, σ2
θ = 2; observe the effect of using larger variance for the

prior. (c) σ2
η = 0.05, N = 500, σ2

θ = 0.1; observe the effect of the larger training data set.
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Example on Bayesian Regression

• III) The third set of experiments corresponds to the case where the
adopted model for prediction is a wrong one, i.e.,

y = θ0 + θ1x+ θ2x
2 + θ3x

3 + θ4x
4 + η.

The adopted values were σ2
η = 0.05, N = 500 and σ2

θ = 2. From the
figure below, observe that once a wrong model has been adopted, one
must not have “high expectations” for good prediction performance.
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The Evidence Function and Occam’s Razor Rule

• Bringing the model explicitly into the scene: The discussion will
evolve around the marginal, p(y); the latter does depend on the
particular model used. Even for Gaussian models, it depends on
the model parameters defining the respective pdfs. Hence, it is
more natural to write the respective defining equation as,

p(y|Mi) =

∫
p(y|Mi,θ)p(θ|Mi)dθ, (7)

where Mi denotes the corresponding model. The quantity
p(y|Mi) is known as the evidence function or simply the
evidence.

• Assuming the choice of a model to be random and P (Mi) being
the corresponding prior pdf, then mobilizing Bayes theorem, we
obtain,

P (Mi|y) =
P (Mi)p(y|Mi)

p(y)
, where p(y) :=

∑
i

P (Mi)p(y|Mi).
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The Evidence Function and Occam’s Razor Rule

• The probability P (Mi) provides a measure of the subjective prior over
all possible models, which expresses our guess on how plausible a model
is with respect to alternative ones, prior to the data arrival.

• We can now obtain the most probable model, after observing y, by
maximizing the numerator (denominator is independent of the model).

• If one assigns to all possible models equal probabilities, then detecting
the most probable model, under the given set of observations becomes a
task of maximizing p(y|Mi). This is the reason that we called this pdf
the evidence function for the model.
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The Evidence Function and Occam’s Razor Rule

• In practice, we content ourselves with using the most probable
model, although the most orthodox Bayesian would suggest to
average all obtained quantities over all possible models.

• In an ideal Bayesian setting, one does not choose among models;
predictions are performed by summing over all possible models,
each one weighted by the respective probability.

• However, in many practical problems, we may have reasons to
suggest that the evidence function is strongly peaked around a
specific model; after all, such an assumption may simplify the
task considerably.
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The Evidence Function and Occam’s Razor Rule

• The evidence function: One may wonder whether maximizing
p(y|Mi), w.r. to different models, is any different from
maximizing the likelihood, p(y;θ) (ML method). As a matter of
fact, the two cases belong to two different worlds.

• ML maximizes w.r. to a single (vector) parameter within an
adopted model, and this is the weak point that makes ML
vulnerable to overfitting.

• On the other hand, maximizing the evidence is an optimization
task w.r. to the model itself; this is a wise alternative that
guards us against overfitting, as it will be unravelled next.
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The Evidence Function and Occam’s Razor Rule

• Let us assume, for simplicity, that θ is a scalar; i.e., θ ∈ R.
Furthermore, assume that the corresponding integrand in the
respective definition, which is analogous to the posterior,
p(θ|y,Mi), peaks around a value of θ; this is obviously the value
that would result as the MAP estimate, θ̂MAP .

• Then from the defining equation, the evidence can be
approximated as,

p(y|Mi) ' p(y|Mi, θ̂MAP )p(θ̂MAP |Mi)∆θθ|y.

• To simplify further, assume that the prior pdf is (almost) uniform
(of width ∆θ). Then, we can write,

p(y|Mi) ' p(y|Mi, θ̂MAP )
∆θθ|y

∆θ
.
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The Evidence Function and Occam’s Razor Rule

The posterior peaks around the value θ̂MAP and the posterior pdf can be approximated by p(θ̂MAP|y;Mi) over an
interval of values equal to ∆θθ|y .

• There two factors involved in the last formula:

The factor p(y|Mi, θ̂MAP) coincides with the likelihood function at

its optimal value, since for this case of uniform prior, θ̂MAP = θ̂ML.
In other words, this factor provides us with the best fit that model
Mi can achieve on the given set of observations.

However, in contrast to the ML method, the evidence function
depends also on the second factor,

∆θθ|y
∆θ . This term accounts for

the complexity of the model and it is named as the Occam factor.
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The Evidence Function and Occam’s Razor Rule

• The Occam factor penalizes these models which are finely tuned
to the received observations.

• As an example, if two different models Mi and Mj have a
similar range of values for their prior pdfs, then if, say,
∆θθ|y(Mi)� ∆θθ|y(Mj) then Mi will be penalized more; only
a small range of values for θ survive (i.e., correspond to high
probability values) after the reception of y.
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The Evidence Function and Occam’s Razor Rule

• So, if this fine-tuned (to the data) model, Mi, had resulted in a
large value of the ML term, it is not certain that the evidence
would be maximized for it, since the Occam factor would be
small.

• Which model, between the two, finally wins depends on the
product of the two involved terms.

• Soon, we will see that the Occam term is also related to the
number of parameters; that is, to the complexity of the adopted
model.
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product of the two involved terms.

• Soon, we will see that the Occam term is also related to the
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Laplacian Approximation and the Evidence Function

• Laplacian approximation: To investigate the evidence function for the
general multiparameter case, we will employ the method of Laplacian
approximation of a pdf. This is a general methodology that
approximates any pdf locally in terms of a Gaussian one. To this end,
define

g(θ) := ln

(
p(y|Mi,θ)p(θ|Mi)

)
.

• Use Taylor’s expansion around θ̂MAP and keep terms up to the second
order,

g(θ) = g(θ̂MAP) + (θ − θ̂MAP)T
∂g(θ)

∂θ

∣∣∣
θ=θ̂MAP

+
1

2
(θ − θ̂MAP)T

∂2g(θ)

∂θ2

∣∣∣
θ=θ̂MAP

(θ − θ̂MAP)

= g(θ̂MAP)− 1

2
(θ − θ̂MAP)TΣ−1(θ − θ̂MAP),

where
Σ−1 := −∂

2g(θ)

∂θ2

∣∣∣
θ=θ̂MAP

.

Sergios Theodoridis, University of Athens. Machine Learning, 35/152



Laplacian Approximation and the Evidence Function

• Laplacian approximation: To investigate the evidence function for the
general multiparameter case, we will employ the method of Laplacian
approximation of a pdf. This is a general methodology that
approximates any pdf locally in terms of a Gaussian one. To this end,
define

g(θ) := ln

(
p(y|Mi,θ)p(θ|Mi)

)
.

• Use Taylor’s expansion around θ̂MAP and keep terms up to the second
order,

g(θ) = g(θ̂MAP) + (θ − θ̂MAP)T
∂g(θ)

∂θ

∣∣∣
θ=θ̂MAP

+
1

2
(θ − θ̂MAP)T

∂2g(θ)

∂θ2

∣∣∣
θ=θ̂MAP

(θ − θ̂MAP)

= g(θ̂MAP)− 1

2
(θ − θ̂MAP)TΣ−1(θ − θ̂MAP),

where
Σ−1 := −∂

2g(θ)

∂θ2

∣∣∣
θ=θ̂MAP

.

Sergios Theodoridis, University of Athens. Machine Learning, 35/152



Laplacian Approximation and the Evidence Function

• The last equation readily leads, by a simple inspection, to the
following approximation,

p(y|Mi,θ)p(θ|Mi) ' p(y|Mi, θ̂MAP)p(θ̂MAP|Mi)×

exp

(
−1

2
(θ − θ̂MAP)TΣ−1(θ − θ̂MAP)

)
.

• Plugging the last equation into the defining integral of (7) we
obtain

p(y|Mi) = p(y|Mi, θ̂MAP)p(θ̂MAP|Mi)(2π)
K
2 |Σ|1/2,

and taking the logarithms, we have

ln p(y|Mi)︸ ︷︷ ︸
Evidence

= ln p(y|Mi, θ̂MAP)︸ ︷︷ ︸
Best likelihood fit

+ ln p(θ̂MAP|Mi) +
K

2
ln(2π) +

1

2
ln |Σ|︸ ︷︷ ︸

Occam factor

.
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Laplacian Approximation and the Evidence Function

• The dependence on the complexity (number of basis functions) of
the model is readily spotted. Moreover, the Occam term,
quantifying complexity, depends on the prior and the second
derivatives (via Σ) of the posterior; that is, it depends on how
“sharp” its shape is.

• Hence, in a single equation, besides the number of parameters
and the associated best-fit term, the evidence takes into account
also information related to the associated variance; maximizing
the evidence leads to the best tradeoff.
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Laplacian Approximation and the Evidence Function

• If the model is too complex, it can fit well a wide range of data
sets, and since p(y|Mi) has to integrate to one, its value for any
value of y is expected to be low. The opposite is true for models
that are too simple; such models can model well some data sets
and consequently the evidence function peaks sharply around a
value in the space of observation sets. Thus, selecting a data set
at random, it is rather unlikely that this has been generated by
such a model.
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Laplacian Approximation and the Evidence Function

• Note that, the Occam term does not depend solely on the number
of parameters; hence, complexity here should be interpreted in a
more “open-minded” way. This robustness against overfitting,
which is intrinsic in the Bayesian inference approach, is the
consequence of integrating out the parameters for any specific
model in (7); this integration penalizes models of high complexity,
because such models can model a large range of data.
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Bayesian Learning: Some Remarks

• In the Bayesian approach, one makes all the modeling
assumptions explicit and it is then left to the rules of probability
theory to provide the answers. One has not to worry about the
choice of an optimizing criterion, where different criteria lead to
different estimators and there is not an objective systematic way
to decide which criterion is best.

• On the other hand, in the Bayesian approach, one has to make
sure that selects the prior that explains the data in the best
possible way.
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Bayesian Learning: Some Remarks

• The choice of the prior pdf is very critical in the performance of
Bayesian methods and must be carried out in such a way so that
to encapsulate prior knowledge as fully as possible.
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Bayesian Learning: Some Remarks

• Note, however, that the Bayesian approach is not free from the
cross-validation phase. Maximizing the evidence, which at the
same time guards against overfitting, does not necessarily mean
that the performance of the designed estimator is optimized.

• There is no reason to suggest that the evidence may be a reliable
predictor of the generalization performance. The generalization
performance depends very much on whether the adopted prior
matches the “true” distribution of the unknown parameters.
Thus, the performance has to be tested on data.
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Bayesian Learning: Some Remarks

• The Laplacian approximation to the evidence function is closely
related to the Bayesian Information Criterion (BIC) for model
selection, which is expressed as,

ln p(y|Mi) ≈ ln p(y|Mi, θ̂MAP)− 1

2
K lnN.

BIC is obtained as a limiting form for large N of the Laplacian
approximation of the evidence function, as discussed before,
assuming a broad enough Gaussian prior, and manipulating a bit
on the determinant involved in the last term.
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Bayesian Learning: Some Remarks

• The Bayesian framework is also closely related to the Minimum
Description Length (MDL) methods. The log-evidence is
associated to the number of bits in the shortest message that
encodes the data via model Mi.
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Bayesian Learning: Some Remarks

• Type II Maximum Likelihood: Note that the evidence is the
marginal likelihood function after integrating out the parameters
θ.

• To distinguish it from the MAP method, when the evidence
function is maximized, with respect to a set of some unknown
parameters, it is usually referred to as Generalized Maximum
Likelihood or Type II Maximum Likelihood and sometimes as
Empirical Bayes. In contrast, the MAP estimator is sometimes
called Type I estimator.
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Latent Variables And The EM Algorithm

• Adopting the Gaussian for the prior as well as the conditional
pdfs, renders the analytical computation of the evidence function
possible, i.e.,

p(y) = N
(
y|Φθ0, Ση + ΦΣθΦ

T
)
.

• Assume that Ση = σ2
ηI, Σθ = σ2

θI and θ0 = 0. Then, the
evidence function depends on two user-defined parameters, i.e.,
ξ := [σ2

η, σ
2
θ ]
T . Let us make this dependence explicit into the

notation and write p(y; ξ).

• We can now compute the parameter vector ξ by maximizing the
evidence function. For such cases, this is just an instance of the
maximum likelihood method.
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Latent Variables And The EM Algorithm

• In general, such closed-form expressions for the evidence function
are not possible, and the integration in the respective equation is
intractable.

• The source of difficulty is that our model is described by two
random variables, i.e., y and θ, yet only one of them, y, can be
directly observed. The other one, θ, cannot be observed and this
is the reason that the Bayesian philosophy tries to integrate it
out of the joint pdf, p(y,θ).

• If θ could be observed, the set of parameters, ξ, could be
obtained by maximizing the likelihood p(y,θ; ξ), given a set of
(joint) observations (y,θ). Because it cannot be observed, the
random variables in θ are known as latent or hidden variables.
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The Expectation Maximization Algorithm

• Latent variables occur very often in a number of problems in
probability and statistics. In a number of cases, from a larger set
of jointly distributed random variables only some can be observed
and the rest remain hidden. Also, it is often useful to build
hidden variables into a model by design. These variables are
meant to represent latent causes that influence the observed
variables and their introduction may facilitate the analysis.

• The EM algorithm: The Expectation-Maximization algorithm
(EM) is an elegant tool to maximize the likelihood function for
problems with latent variables. The problem is stated next in a
general formulation.
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The Expectation Maximization Algorithm

• Let x be a random vector and let X be the respective set of
observations. Let X l := {xl1, . . . ,xlN} be the corresponding set
of latent variables; these can be either of a discrete or of a
continuous nature.

• Each observation in X is associated with a latent vector, xl, in
X l. We refer to the set

{
X ,X l

}
as the complete data set and to

the set of observations, X , as the incomplete one. Let their joint
distribution be parameterized in terms of a set of unknown
parameters, ξ.

• Note that, everything to be said, also, applies if in addition to or
instead of X l the set of hidden variables contains parameters of
fixed size, independent of the size N .
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The Expectation Maximization Algorithm

• If the complete log-likelihood ln p(X ,X l; ξ) were available, then
the problem would be a typical ML one.

• However, since no observations for the latent variables are
available, the EM algorithm considers the expectation of the
complete log-likelihood w.r. to X l; this operation is possible, only
if the posterior distribution p(X l|X ; ξ) is assumed to be known,
provided that ξ is known, too.

• To this end, the EM algorithm builds upon an iterative
philosophy, initialized by an arbitrary value ξ(0). Then it proceeds
along the following steps:
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The Expectation Maximization Algorithm

• The EM Algorithm

1 Expectation E-step: at the (j + 1) iteration, compute
p(X l|X , ξ(j)) and

Q(ξ, ξ(j)) = E
[

ln p(X ,X l; ξ)
]
, (8)

where the expectation is taken with respect to p(X l|X ; ξ(j)).

2 Maximization M-step: Determine ξ(j+1) so that

ξ(j+1) = arg max
ξ
Q(ξ, ξ(j)). (9)

3 Check for convergence according to a criterion. If it is not satisfied
go to step 1.

• A possible convergence criterion is to check whether
‖ξ(j+1) − ξ(j)‖ < ε, for some user-defined constant ε. The use of the
EM algorithm presupposes that working with the joint pdf, p(X ,X l; ξ),
is computationally tractable.
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Linear Regression And The EM Algorithm

• The Bayesian viewpoint to the regression has already been
considered via the Gaussian model assumption for the conditional,
p(y|θ) and the prior p(θ). This in turn led to a Gaussian
posterior, p(θ|y). Assume, for simplicity that, Ση = σ2

ηI, as well
as for the respective prior, Σθ = σ2

θI. Let also for the prior that
θ0 = 0. Hence, the posterior is the Gaussian N (θ|µθ|y, Σθ|y)
where (Eqs. (4) and (5))

µθ|y =
1

σ2
η

(
1

σ2
θ

I +
1

σ2
η

ΦTΦ

)−1

ΦTy,

Σθ|y =

(
1

σ2
θ

I +
1

σ2
η

ΦTΦ

)−1

.

• Our goal now becomes to consider σ2
η and σ2

θ as (non-random)
parameters and to obtain their values by maximizing the evidence
function in (1). We will employ the EM algorithm.
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θI. Let also for the prior that
θ0 = 0. Hence, the posterior is the Gaussian N (θ|µθ|y, Σθ|y)
where (Eqs. (4) and (5))

µθ|y =
1

σ2
η

(
1

σ2
θ

I +
1

σ2
η

ΦTΦ

)−1

ΦTy,

Σθ|y =

(
1

σ2
θ

I +
1

σ2
η

ΦTΦ

)−1

.

• Our goal now becomes to consider σ2
η and σ2

θ as (non-random)
parameters and to obtain their values by maximizing the evidence
function in (1). We will employ the EM algorithm.
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Linear Regression And The EM Algorithm

• In the current context, the set of observations, which in the
general EM formulation were denoted as X , will be our familiar
observation vector, y. Also, the place of the set of the latent
variables, denoted as X l, is replaced by θ.

• Recall that a prerequisite in order to apply the EM algorithm is
the knowledge of the posterior, which for this case is known,
given the value of the parameters, σ2

η and σ2
θ .

• We will work with the precision variables and the parameter
vector of the unknown variables becomes

ξ = [α, β]T , α :=
1

σ2
θ

and β :=
1

σ2
η

.

• The EM algorithm is initialized with some arbitrary positive
values α(0) and β(0). The resulting algorithm proceeds as follows:
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Linear Regression And The EM Algorithm

• Algorithm For Optimizing The Unknown Parameters, α, β.

Initialization.

Assign α(0) and β(0) some positive values.

For j = 0, 1, . . . , Do

Compute:

Σ
(j)

θ|y =
(
α(j)I + β(j)ΦTΦ

)−1

,

µ
(j)

θ|y = β(j)Σ
(j)

θ|yΦTy.

Compute:

α(j+1) =
K

‖µ(j)

θ|y‖2 + trace{Σ(j)

θ|y}
,

β(j+1) =
N

‖y − Φµ
(j)

θ|y‖2 + trace{ΦΣ(j)

θ|yΦT }
.

End For
Stop If a stopping criterion is met.
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Linear Regression And The EM Algorithm

Proof of the algorithm.

• E-Step: This step comprises the computation of the expectation of the
complete log-likelihood with respect to the latent variables. The
expectation is taken with respect to the posterior. The log-likelihood
associated with the complete data set is given by,

ln p(y,θ; ξ) := ln p(y,θ;α, β) = ln
(
p(y|θ;β)p(θ;α)

)
,

which for the case of the involved Gaussians becomes,

ln p(y,θ;α, β) =
N

2
lnβ +

K

2
lnα− β

2
‖y − Φθ‖2 − α

2
θTθ

−
(
N

2
+
K

2

)
ln(2π).

• Treating the latent variables as random ones, the expected value of the
above, w.r. to θ, is carried out via the posterior, N (µθ|y, Σθ|y). To this
end, the following computations are in order:
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Linear Regression And The EM Algorithm

• E-Step continued:

1 To compute E[θTθ], recall the definition of the respective
covariance matrix,

Σ
(j)
θ|y = E

[
(θ− µ(j)

θ|y)(θ− µ(j)
θ|y)T

]
or E[θθT ] = Σ

(j)
θ|y + µ

(j)
θ|yµ

(j)T
θ|y ,

which results to

A := E[θTθ] = E[trace{θθT }]

= trace{µ(j)
θ|yµ

(j)T
θ|y +Σ

(j)
θ|y}

= ‖µ(j)
θ|y‖

2 + trace{Σ(j)
θ|y}.

2 To compute E[‖y − Φθ‖2], define ψ := y − Φθ, and use the
previous rationale to compute E[ψTψ], which leads to

B := E[‖y − Φθ‖2] = ‖y − Φµ
(j)
θ|y‖

2 + trace{ΦΣ(j)
θ|yΦT }.

Hence,

Q(α, β;α(j), β(j)) =
N

2
lnβ+

K

2
lnα−β

2
B−α

2
A−
(
N

2
+
K

2

)
ln(2π).
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Linear Regression And The EM Algorithm

• M-Step: In this step, maximization of the Q function with respect to α
and β is performed to provide their updated estimates. Thus,

α(j+1) :
∂

∂α
Q(α, β;α(j), β(j)) = 0

β(j+1) :
∂

∂β
Q(α, β;α(j), β(j)) = 0,

which trivially lead to the two algorithmic steps, i.e.,

α(j+1) =
K

‖µ(j)
θ|y‖2 + trace{Σ(j)

θ|y}
,

β(j+1) =
N

‖y − Φµ
(j)
θ|y‖2 + trace{ΦΣ(j)

θ|yΦT }
.
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Linear Regression Example Via The EM Algorithm

• We return to the same example, which we treated already, concerning
the regression model,

yn = θ0 + θ1xn + θ2x
2
n + θ3x

3
n + θ5x

5
n + ηn, n = 1, 2, . . . , N,

• The variance of the Gaussian noise used in the model to generate the
data was set equal to σ2

η = 0.05. The number of training points was

N = 500. For the EM algorithm, both initial values α(0) and β(0) were
set equal to one. The correct dimensionality for the unknown parameter
vector, θ, was used.

• The recovered values after the convergence of the EM were, α = 1.32
corresponding to σ2

θ = 0.756 and β = 19.96 corresponding to
σ2
η = 0.0501. Note that the latter is very close to the true variance of

the noise.

• Having obtained the optimal values for σ2
η and σ2

θ , we can use them to
perform predictions of the output variable y at twenty points, using (6)
and the value of µθ|y as computed by the EM algorithm.

• The obtained results are summarized by the following figures in the next
slide:
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Linear Regression Example Via The EM Algorithm

Recall that, for Gaussian prior and conditional, the pdf for the
predicted value of y, associated with the observed vector x, is given
by:

p(y|x,y) = N
(
y|µy, σ2

y

)
, where

µy = φT (x)µθ|y, σ2
y = σ2

η + σ2
ησ

2
θφ

T (x)
(
σ2
ηI + σ2

θΦ
TΦ
)−1

φ(x).

(a) (b)

a) The original graph from which the training points were sampled. In red, the respective predictions ŷ and associated

error bars for twenty randomly chosen points. b) The convergence curve for σ2
η as a function of the iterations of the EM

algorithm. The red line corresponds to the true value.
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Gaussian Mixture Models

• Often in practice, existing probability distributions models (e.g.,
Gaussian, gamma, exponential, Dirichlet) are not sufficient to
provide a good enough description of the randomness that
underlies the data at hand. An alternative path is via mixture
models.

• Mixture modeling offers the freedom to model the unknown pdf,
p(x), as a linear combination of different distributions, i.e.,

p(x) =
K∑
k=1

Pkp(x|k),

where Pk are the respective weighting parameters associated with
the corresponding contributing pdf, p(x|k). In order to guarantee
that p(x) is a pdf, the weighting parameters must be
non-negative and add to one (

∑K
k=1 Pk = 1).
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Gaussian Mixture Models

• The physical interpretation of the previous combination is the
following:

• We are given a set of K distributions, p(x|k), k = 1, 2, . . . ,K.
Each observation, xn, n = 1, 2, . . . , N , is drawn from one of
these K distributions, but we are not told from which one. All we
know is a set of parameters, Pk, 1, 2, . . . ,K, each one providing
the probability that a sample has been drawn from the
corresponding pdf, p(x|k).

• It can be shown that, for large enough number of mixtures, K,
and appropriate choice of the involved parameters, one can
approximate arbitrary close any continuous pdf.
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Gaussian Mixture Models

• Mixture modeling is a typical task involving hidden variables;
these are the labels, k, of the pdf from which an obtained
observation has originated. In practice, each p(x|k) is chosen
from a known pdf family, parameterized via a set of parameters,
ξk, and we can write

p(x) =

K∑
k=1

Pkp(x|k; ξk),

• The learning task is to estimate (Pk, ξk), k = 1, 2, . . . ,K, based
on a set of observations xn, n = 1, 2, . . . , N .
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Gaussian Mixture Models

• The set of observations, X , forms the incomplete set while the
complete set {X ,K} comprises the samples (xn, kn),
n = 1, . . . , N , with kn being the label of the distribution from
which xn was drawn.

• Parameter estimation for such a problem naturally lends itself to
be treated via the EM algorithm. We will demonstrate the
procedure via the use of Gaussian mixtures.
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Gaussian Mixture Models

• Let
p(x|k; ξk) = p(x|k;µk, Σk) = N (x|µk, Σk) ,

where for simplicity we will assume that Σk = σ2
kI, k = 1, . . . ,K.

We will further assume that the observations are i.i.d. For such a
modeling, the following hold true:

The log-likelihood of the complete data set is given by,

ln p (X ,K; Ξ,P ) =

N∑
n=1

ln p(xn, kn; ξkn) =

N∑
n=1

ln
(
p(xn|kn; ξkn)Pkn

)
.

We have used the notation,

Ξ = [ξT1 , . . . , ξ
T
K ]T , P = [P1, P2, . . . , PK ]T , and ξk = [µTk , σ

2
k]T .
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Gaussian Mixture Models

• For the EM, we need to know the posterior probabilities of the discrete
hidden variables.

These are given by

P (k|x; Ξ,P ) =
p(x, k; Ξ,P )

p(x; Ξ,P )
=
p(x|k; ξk)Pk
p(x; Ξ,P )

, (10)

where

p(x; Ξ,P ) =

K∑
k=1

Pkp(x|k; ξk).

• We have now all the ingredients required by the EM algorithm. Starting
from Ξ(0) and P (0), the following algorithm results for the computation
of the unknown parameters, µk, σ2

k, Pk, k = 1, 2, . . . ,K.
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Gaussian Mixture Models

• Algorithm For The Gaussian Mixture Model

Initialization.

Assign values to µ
(0)
k , k = 1, 2, . . . ,K.

Assign positive values to σ
2(0)
k , k = 1, 2, . . . ,K.

Assign values to P
(0)
k , k = 1, 2, . . . ,K, such as

∑K
k=1 P

(0)
k = 1.

For j = 1, 2, . . . , Do

Set
γkn := P (k|xn;Ξ(j),P (j)).

Compute:

µ
(j+1)
k =

∑N
n=1 γknxn∑N
n=1 γkn

, (11)

σ
2(j+1)
k =

∑N
n=1 γkn‖xn − µ

(j+1)
k ‖2

l
∑N
n=1 γkn

,

P
(j+1)
k =

1

N

N∑
n=1

γkn.

End For
Stop if a stopping criterion is met.
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Gaussian Mixture Models

• The extension to the case of a general covariance matrix is
straightforward by replacing the variance update equation by,

Σ
(j+1)
k =

∑N
n=1 γkn(xn − µ(j+1)

k )(xn − µ(j+1)
k )T∑N

n=1 γkn
.

• Some Remarks

In order to get good initialization for the EM algorithm, sometimes
a simpler clustering algorithm, e.g., the k-means (to be discussed
soon) is run to provide an initial estimate of the means and shapes
of clusters (covariance matrices), by associating each mixture with
a cluster in the input space. Another simpler way is to select K
points randomly from the data set. A more elaborate technique,
which is commonly used, is to select them randomly but in such a
way so that to make sure that the whole data set is represented in
a balanced way.
The number of mixtures, K, is usually determined by
cross-validation.
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Σ
(j+1)
k =

∑N
n=1 γkn(xn − µ(j+1)

k )(xn − µ(j+1)
k )T∑N

n=1 γkn
.
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In order to get good initialization for the EM algorithm, sometimes
a simpler clustering algorithm, e.g., the k-means (to be discussed
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Gaussian Mixture Models

Proof of the algorithm

• E-Step: Combining the log-likelihood and the posterior in the form of
(10), the corresponding expectation results in

Q(Ξ,P ; Ξ(j),P (j)) =

N∑
n=1

E
[

ln
(
p(xn|kn; ξkn)Pkn

)]
:=

N∑
n=1

K∑
k=1

P (k|xn; Ξ(j),P (j))
(

lnPk −
l

2
lnσ2

k

− 1

2σ2
k

‖xn − µk‖2
)

+ C,

where C includes all the constant terms. Note that we have finally
relaxed the notation from kn to k, since we sum up over all k, which
does not depend on n.

• M-Step: Maximization of Q(Ξ,P ; Ξ(j),P (j)) w.r. to all the involved
parameters results in the set of recursions given in the algorithm before.
Note that maximizing with respect to Pk, k = 1, 2, . . . ,K, is a
constrained optimization task, because probabilities have to add to one.
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Example on Gaussian Mixture Modeling

• The data are generated according to three (equiprobable) Gaussians. Each
Gaussian has different mean and covariance matrix, with values reported in
the book. The number of the generated points is 300 with 100 points per
mixture. The points are shown in the figures below together with the gray
circles, which indicate the 80% probability regions for each one of the
clusters.
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The curves (ellipses) indicate the 80% probability regions. The gray curves correspond to the true Gaussian
clusters. The red curves correspond to a) the initial values for the mean and covariance matrices, (b) to the

recovered by the EM algorithm mixtures after 5 iterations and (c) after 30 iterations. (d) The log-likelihood as a
function of the number of iterations. Probabilities were initialized to their true (equal) values.
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Example on Gaussian Mixture Modeling

• The figures below correspond to a different setup. The number of points
remains the same as before, but the clusters were initialized with mean values
very far from the true ones. The covariances and probabilities were initialized
as before. Observe that in this case, the EM algorithm fails to capture the
true nature of the problem, having been trapped in a local minimum.
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As before, the red curves correspond to a) the initial values for the mean, covariance matrices, (b) to the
recovered by the EM algorithm mixtures after 5 iterations and (c) after 30 iterations. (d) The log-likelihood as a

functions of the number of iterations. The EM fails to recover the clusters.
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Mixture Modeling and Clustering

• The task of clustering is to assign a number of points,
x1, . . . ,xN , into K groups or clusters. Points which are assigned
to the same cluster must be more “similar” than points which are
assigned to other clusters.

• A major issue in clustering is to quantify “similarity”. Different
definitions end up with different clusterings. A clustering is a
specific allocation of the points to clusters.

• In general, assigning points to clusters, according to an optimality
criterion, is an NP-hard task. Thus, in general, any clustering
algorithm provides a suboptimal solution.
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Mixture Modeling and Clustering

• Gaussian mixture modeling is one among the popular clustering
algorithms. The main assumption is that the points, which
belong to the same cluster, are distributed according to the same
Gaussian distribution (this is how similarity is defined in this
case), of unknown mean and covariance matrix. Each mixture
component defines a different cluster.

• Thus, the goal is to obtain estimates, via the EM, of the posterior
probabilities, P (k|xn), k = 1, 2, . . . ,K, n = 1, 2, . . . , N , where
each k corresponds to a cluster (mixture). Then, each point is
assigned to cluster k according to the rule,

assign xn to cluster k = arg max
i
P (i|xn), i = 1, 2, . . . ,K.
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The k-Means Or Isodata Clustering Algorithm

• In the EM algorithm, the posterior probability of each point, xn,
with respect to each one of the clusters, k, is computed
recursively. Moreover, the mean value µk, of the points
associated with cluster k, is computed as a weighted average of
all the training points (11).

• In contrast, in the k-means algorithm, at each iteration, the
posterior probability gets a binary value in {1, 0}; for each point,
xn, the Euclidean distance from all the currently available
estimates of the mean values is computed, and the posterior
probability is estimated according to the following rule,

P (k|xn) =

{
1 if ||xn − µk||2 < ||xn − µj ||2, j 6= k,
0 otherwise.
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The k-Means Or Isodata Clustering Algorithm

• The k-Means or Isodata Clustering Algorithm

Initialize:

Select the number of clusters K.
Set µk, k = 1, 2, . . . ,K, to arbitrarily values.

For n = 1, 2, . . . , N, Do

Determine the closest cluster mean, say, µk, to xn.
Set b(n) = k.

End For
For k = 1, 2, . . . ,K, Do

Update µk, k = 1, 2, . . . ,K, as the mean of all the points with
b(n) = k, n = 1, 2, . . . , N .

End For
Until no change in µk, k = 1, 2, . . . ,K, occurs between two
successive iterations.

• Note that both the EM algorithms as well as the k-means algorithms
can only recover compact clusters. For example, if the points are
distributed in ring-shaped clusters, then this type of clustering
algorithms is not appropriate.
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The k-Means and Gaussian Mixtures: Some Examples

• Figure (a) shows the data points generated by two Gaussians; 200 points from
each one. The points are shown by red and gray colors, depending on the
Gaussian which generated them. For both, the EM and the k-means
algorithm, the correct number of clusters (K = 2) was given. The k-means
was initialized with zero mean values.
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b) the recovered clusters by the k-means (red and gray), c) The 80% probability curves for the initialization of
the the EM algorithm and d) the final obtained by the EM algorithm Gaussians with the respective clusters.
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The k-Means and Gaussian Mixtures: Some Examples

• The figures correspond to the same Gaussians as before; however, now, there
is an imbalance to the number of the points, where only 20 points spring from
the first one and 200 points from the second. Observe that the k-means has a
problem and it attempts to recover more equally sized clusters.
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b) The recovered clusters by the k-means (red and gray). Observe that the algorithm has not identified the
correct clusters, by assigning more points to the “smaller” one. c) The 80% probability curves for the initialization
of the the EM algorithm and d) the final Gaussians, obtained by the EM algorithm, with the respective clusters.
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Looking Deeper: A Lower Bound Maximization View of the EM

• Let us consider the functional

F(q, ξ) :=

∫
q(X l) ln

p(X ,X l; ξ)

q(X l)
dX l, (12)

where q(X l) is any nonnegative function that integrates to one; that is,
it is a pdf defined over the latent variables. The functional F(·, ·),
depends on ξ and on q(·), and its definition bears a strong similarity
with the notion of free energy, used in statistical physics. Indeed, the
previous can be written as,

F(q, ξ) =

∫
q(X l) ln p(X ,X l; ξ)dX l +H,

where,
H = −

∫
q(X l) ln q(X l)dX l,

is the entropy associated with q(X l).

• If one defines − ln p(X ,X l; ξ) as the energy of the system, (X ,X l),
then F(q, ξ), represents the negative of the so-called free energy.
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Looking Deeper: A Lower Bound Maximization View of the EM

• Elaborating on (12), we get

F(q, ξ) =

∫
q(X l) ln

p(X l|X ; ξ)p(X ; ξ)

q(X l)
dX l,

=

∫
q(X l) ln

p(X l|X ; ξ)

q(X l)
dX l + ln p(X ; ξ), (13)

where the latter results since p(X ; ξ) does not depend on q(X l).

• The first term on the right hand side is the negative of the
so-called Kullback-Leibler divergence between q(X l) and
p(X l|X ; ξ), which we will denote as KL(q ‖ p).
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Looking Deeper: A Lower Bound Maximization View of the EM

• Thus, finally we get

ln p(X ; ξ) = F(q, ξ) + KL(q ‖ p). (14)

• It is known that KL(q ‖ p) ≥ 0; thus, it turns out that

ln p(X ; ξ) ≥ F(q, ξ). (15)

• In other words, F(q, ξ) is a lower bound of the log-likelihood
function, and the bound becomes tight if KL(q ‖ p) = 0, which is
true, if and only if, q(X l) = p(X l|X ; ξ).
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Looking Deeper: A Lower Bound Maximization View of the EM

• The previous findings pave the way of maximizing ln p(X ; ξ) by
trying to maximize its lower bound.

• Note that maximization of F(·, ·) involves two terms, namely
q, ξ. We will adopt a procedure that belongs to a more general
class of optimization algorithms known as alternating
optimization. Such an approach naturally imposes an iterative
procedure.
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Looking Deeper: A Lower Bound Maximization View of the EM

• Starting from an arbitrary ξ(0), the (j + 1) iteration comprises the
following steps:

Step 1: Holding ξ(j) fixed, optimize w.r. to q. This step tightens
the lower bound in (15). This is achieved if KL(q ‖ p) = 0 and it
can only happen if

q(j+1)(X l) = p(X l|X ; ξ(j)),

that is, if we set q(X l) equal to the posterior given X and ξ(j); as
(14) suggests, this makes the bound tight, i.e.,

ln p(X ; ξ(j)) = F
(
p(X l|X ; ξ(j)), ξ(j)

)
.

Step 2: Fixing q(j+1)(·), insert it in the place of q in (15), and
since the bound holds for any q(·), maximize w.r. to ξ, i.e.,

ξ(j+1) = arg max
ξ
F
(
p
(
X l|X ; ξ(j)

)
, ξ
)
.
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Looking Deeper: A Lower Bound Maximization View of the EM

• Thus, we have re-derived the EM algorithm. Indeed, from the definition
of F(·, ·) in (12) we obtain that

F
(
p(X l|X ; ξ(j)), ξ

)
= Q(ξ, ξ(j))−

∫
p(X l|X ; ξ(j)) ln p(X l|X ; ξ(j))dX l,

where Q(ξ, ξ(j)) = E
[

ln p(X ,X l; ξ)
]

is the same used in the EM; note

that, the second term on the right hand side is independent of ξ.

• The rederivation of the EM via this path makes it clear that the
quantity, which is maximized, is the log-likelihood, ln p(X ; ξ), and that
its value is guaranteed not to decrease after each combined iteration
step.
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• The rederivation of the EM via this path makes it clear that the
quantity, which is maximized, is the log-likelihood, ln p(X ; ξ), and that
its value is guaranteed not to decrease after each combined iteration
step.

The E-step adjusts q(j) := q(j)(X l) so that its KL distance from p(j) := p(X l|X ; ξ(j)) becomes zero.
The M-step maximizes with respect to ξ.
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Exponential Family of Probability Distributions

• The exponential family of distributions is of particular importance.
Let x ∈ Rl be a random vector and θ ∈ RK a (random)
parameter vector. We say that the parameterized pdf p(x|θ) is of
the exponential form if

p(x|θ) = g(θ)f(x) exp
(
φT (θ)u(x)

)
, (16)

where
g(θ) =

1∫
f(x) exp

(
φT (θ)u(x)

)
dx
,

is the normalizing constant of the pdf. For discrete variables, x,
the respective function represents the probability mass function
P (x|θ); in this case, the above integration becomes a summation.

• The vector φ(θ) comprises the set of the so-called natural
parameters. The function u(x) is a sufficient statistic for the
parameter θ. If φ(θ) = θ, then the exponential family is said to
be in canonical form.
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parameters. The function u(x) is a sufficient statistic for the
parameter θ. If φ(θ) = θ, then the exponential family is said to
be in canonical form.
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Exponential Family of Probability Distributions

• An advantage of the exponential family is that one can find
conjugate priors for θ; that is, priors which lead to posteriors,
p(θ|X ), of the same functional form as p(θ).

• If the conditional (likelihood) pdf is of the exponential form, i.e.,

p(x|θ) = g(θ)f(x) exp
(
φT (θ)u(x)

)
,

its conjugate prior is defined as,

p(θ;λ,v) = h(λ,v)
(
g(θ)

)λ
exp

(
φT (θ)v

)
, (17)

where λ > 0 and v are known as hyperparameters; that is,
parameters that control other parameters. The factor h(λ,v) is an
appropriate normalizing constant.

• It is easy to see that defining the prior as in (17) and the
likelihood function as above, the posterior p(θ|x) is of the same
form as in (17).

Sergios Theodoridis, University of Athens. Machine Learning, 83/152



Exponential Family of Probability Distributions

• An advantage of the exponential family is that one can find
conjugate priors for θ; that is, priors which lead to posteriors,
p(θ|X ), of the same functional form as p(θ).

• If the conditional (likelihood) pdf is of the exponential form, i.e.,

p(x|θ) = g(θ)f(x) exp
(
φT (θ)u(x)

)
,

its conjugate prior is defined as,

p(θ;λ,v) = h(λ,v)
(
g(θ)

)λ
exp

(
φT (θ)v

)
, (17)

where λ > 0 and v are known as hyperparameters; that is,
parameters that control other parameters. The factor h(λ,v) is an
appropriate normalizing constant.

• It is easy to see that defining the prior as in (17) and the
likelihood function as above, the posterior p(θ|x) is of the same
form as in (17).

Sergios Theodoridis, University of Athens. Machine Learning, 83/152



Exponential Family of Probability Distributions

• An advantage of the exponential family is that one can find
conjugate priors for θ; that is, priors which lead to posteriors,
p(θ|X ), of the same functional form as p(θ).

• If the conditional (likelihood) pdf is of the exponential form, i.e.,

p(x|θ) = g(θ)f(x) exp
(
φT (θ)u(x)

)
,

its conjugate prior is defined as,

p(θ;λ,v) = h(λ,v)
(
g(θ)

)λ
exp

(
φT (θ)v

)
, (17)

where λ > 0 and v are known as hyperparameters; that is,
parameters that control other parameters. The factor h(λ,v) is an
appropriate normalizing constant.

• It is easy to see that defining the prior as in (17) and the
likelihood function as above, the posterior p(θ|x) is of the same
form as in (17).

Sergios Theodoridis, University of Athens. Machine Learning, 83/152



Exponential Family of Probability Distributions

• Assume that x and θ obey (16)-(17) and let X = {x1, . . . ,xN}
be a set of i.i.d. observations. Then (taking into account that
p(θ|X ) ∝ p(X|θ)p(θ)), we obtain

p(X|θ) = (g(θ))N
N∏
n=1

f(xn) exp

(
φT (θ)

N∑
i=1

u(xi)

)
, (18)

p(θ|X ) ∝ (g(θ))λ+N exp

(
φT (θ)

(
v +

N∑
n=1

u(xn)
))

. (19)
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Exponential Family of Probability Distributions

• In other words, the posterior has hyperparameters equal to

λ̃ = λ+N, ṽ = v +

N∑
n=1

u(xn).

• Interpreting the above, one can view λ as being the effective
number of observations that, implicitly, the prior information
contributes to the Bayesian learning process and v is the total
amount of information that these (implicit) λ observations
contribute to the sufficient statistic. Basically, their exact values
quantify the amount of prior knowledge that the designer wants to
embed into the learning task.

Sergios Theodoridis, University of Athens. Machine Learning, 85/152



Exponential Family of Probability Distributions

• In other words, the posterior has hyperparameters equal to

λ̃ = λ+N, ṽ = v +
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Exponential Family of Probability Distributions

• The Gaussian-gamma pair: Let our random variable, x, be a scalar
and assume that,

p(x|σ2) = N (x|µ, σ2),

where µ is known and σ2 is an unknown parameter. We will show
that:

I. p(x|σ2) belongs to the exponential family.
It is algebraically more convenient to work with the precision
β = 1

σ2 . Hence,

p(x|β) =
β1/2

√
2π

exp

(
−1

2
β(x− µ)2

)
.

Thus, p(x|β) belongs to the exponential family with

f(x) =
1√
2π
, φ(β) = −β, u(x) =

1

2
(x− µ)2,

and
g(β) =

1∫ +∞
−∞

1√
2π

exp
(
− 1

2β(x− µ)2
)
dx

= β1/2.
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Exponential Family of Probability Distributions
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Exponential Family of Probability Distributions

• (Continued)

II. The conjugate prior of N (x|µ, σ2), for known µ and unknown
σ2, follows the gamma distribution.

From the corresponding definition in (17), we have,

p(β;λ, v) = h(λ, v)β
λ
2 exp(−βv).

This has the form of

Gamma(β; a, b) =
1

Γ(a)
baβa−1 exp(−bβ),

with parameters a = λ
2 + 1 and b = v. The normalizing constant,

h(λ, v), is necessarily equal to ba/Γ(a).
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Exponential Family of Probability Distributions

• If we are given multiple observations xn, n = 1, 2, . . . , N , then
the resulting posterior according to (19) will be a gamma
distribution with

b̃ = b+
1

2

N∑
n=1

(xn − µ)2 = b+
N

2
σ̂2
ML,

where σ̂2
ML denotes the maximum likelihood estimate of the

variance.

• Hence, the physical meaning of b is that it quantifies our prior
guess about the unknown variance. It can easily be shown that
the conjugate prior w.r. to µ, if σ2 is known, is a Gaussian.
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Exponential Family of Probability Distributions

• In case of a multivariate Gaussian of known mean µ and
unknown covariance matrix Σ (precision matrix Q = Σ−1), it can
also be shown that it is of the exponential form and its conjugate
prior is given by the Wishart distribution (multivariate analogue
of the gamma distribution),

W(Q|W, ν) = h|Q|
ν−l−1

2 exp

(
−1

2
trace

{
W−1Q

})
,

where h is the normalizing constant and W is an l × l matrix.
The normalizing constant is given by,

h = |W |−
ν
2

(
2
νl
2 π

l(l−1)
4

l∏
i=1

Γ

(
ν + 1− i

2

))−1

.

.
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Variational Approximation in Bayesian Learning

• Recall that in order to apply the EM algorithm, the functional
form of the posterior of the latent variables, given the
observations, must be known.

• Furthermore, the analytic computation of the posterior is not
always tractable. In such cases, the EM algorithm, in its standard
form, is not applicable.

• We are going to describe an alternative path, that builds upon the
EM interpretation, based upon the lower bound interpretation.

Sergios Theodoridis, University of Athens. Machine Learning, 90/152



Variational Approximation in Bayesian Learning

• Recall that in order to apply the EM algorithm, the functional
form of the posterior of the latent variables, given the
observations, must be known.

• Furthermore, the analytic computation of the posterior is not
always tractable. In such cases, the EM algorithm, in its standard
form, is not applicable.

• We are going to describe an alternative path, that builds upon the
EM interpretation, based upon the lower bound interpretation.

Sergios Theodoridis, University of Athens. Machine Learning, 90/152



Variational Approximation in Bayesian Learning

• Recall that in order to apply the EM algorithm, the functional
form of the posterior of the latent variables, given the
observations, must be known.

• Furthermore, the analytic computation of the posterior is not
always tractable. In such cases, the EM algorithm, in its standard
form, is not applicable.

• We are going to describe an alternative path, that builds upon the
EM interpretation, based upon the lower bound interpretation.

Sergios Theodoridis, University of Athens. Machine Learning, 90/152



Variational Approximation in Bayesian Learning

• Let X be the set of observed variables and X l the respective set
of latent ones. Furthermore, we will explicitly bring into the game
the set of parameters, θ ∈ RK , which are treated as random
variables in the Bayesian context, accompanied by a prior pdf.

• Note that we reserve the term “latent” for hidden variables whose
number depends on the number of observations, N . In contrast,
a random parameter vector, θ, although a hidden random vector,
it has a fixed dimension.

• The functional in (12) is now redefined as,

F(q, ξ) =

∫
q(X l,θ)ln

p(X ,X l,θ; ξ)

q(X l,θ)
dX ldθ, (20)

where ξ is the set of deterministic (hyper)parameters.
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Variational Approximation in Bayesian Learning

• Then the counterpart of (13) becomes (suppressing the
notational dependence on ξ)

F(q) = lnp(X ) +

∫
q(X l,θ)ln

p(X l,θ|X )

q(X l,θ)
dX ldθ. (21)

• The difference with (13) lies in the fact that p(X l,θ|X ) is not
known; so maximizing the above w.r. to q by setting to zero the
KL divergence, KL(q||p(X l,θ|X )), is no more possible.

• In order to deal with the current problem, we will constrain
q(X l,θ) to lie within a family of functions. Note that in this
case, if the unknown p(X l,θ|X ) does not belong to this specific
family of functions, the KL divergence cannot become zero and
the lower bound, F(q), of the marginal log likelihood cannot be
made tight. This is the reason that the method is known as
variational approximation.
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The Mean Field Approximation

• This type of approximation results by constraining q(X l,θ) to be
factorized, i.e.,

q(X l,θ) = qX l(X l)qθ(θ). (22)

This factorization can be, and usually it is, extended to

q(X l,θ) = qxl1
(xl1) . . . qxlN

(xlN )qθ(θ) (23)

To simplify our notation, without sacrificing generality, we will
work with (22). This type of approximation has been inspired by
the field of statistical physics and it is known as mean field
approximation.
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The Mean Field Approximation

• Having adopted (22) and recalling that
p(X ,X l,θ) = p(X ,X l|θ)p(θ), (20) can take either of the two
forms,

a) F(qX l , qθ) =

∫
qX l(X l)

(∫
qθ(θ) ln p(X ,X l,θ)dθ

)
dX l

−
∫
qX l(X l) ln qX l(X l)dX l −

∫
qθ(θ) ln qθ(θ)dθ,

(24)

b) F(qX l , qθ) =

∫
qθ(θ)

(∫
qX l(X l) ln

(
p(X ,X l|θ)p(θ)

)
dX l

)
dθ

−
∫
qθ(θ) ln qθ(θ)dθ −

∫
qX l(X l) ln qX l(X l)dX l.

(25)
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The Mean Field Approximation

• Having expressed the lower bound, F(qX l , qθ), as in (24) and
(25), maximization w.r. to q(X l,θ) (as it is required by the
E-step of the EM algorithm) will take place by splitting the
process so that to maximize first w.r. to qX l and then w.r. to qθ.

• Bringing back into the scene the (deterministic) parameter
vector, ξ, and initializing the algorithm from arbitrary values for
ξ(0) as well as for the involved statistics related to qθ (this will
become clear while dealing with the examples), the (j + 1)
iteration comprises the following steps:
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The Mean Field Approximation

• E-Step 1a: Holding ξ(j) and q
(j)
θ fixed, optimizing (24) w.r. to

qX l , leads to:

q
(j+1)

X l (X l) =
exp

(
E
q
(j)
θ

[
ln p(X ,X l|θ; ξ(j))

])
∫

exp
(
E
q
(j)
θ

[
ln p(X ,X l|θ; ξ(j))

])
dX l

. (26)

• E-Step 1b: Freezing ξ(j) and q
(j+1)

X l and maximizing with respect
to qθ(·), we obtain,

q
(j+1)
θ (θ) =

p(θ; ξ(j)) exp
(
E
q
(j+1)

X l

[
ln p(X ,X l|θ; ξ(j))

])
∫
p(θ; ξ(j)) exp

(
E
q
(j+1)

X l

[
ln p(X ,X l|θ; ξ(j))

])
dθ
.

(27)

Steps 1a and 1b comprise the E-step of the variational Bayesian
EM.

Sergios Theodoridis, University of Athens. Machine Learning, 96/152



The Mean Field Approximation

• E-Step 1a: Holding ξ(j) and q
(j)
θ fixed, optimizing (24) w.r. to

qX l , leads to:

q
(j+1)

X l (X l) =
exp

(
E
q
(j)
θ

[
ln p(X ,X l|θ; ξ(j))

])
∫

exp
(
E
q
(j)
θ

[
ln p(X ,X l|θ; ξ(j))

])
dX l

. (26)

• E-Step 1b: Freezing ξ(j) and q
(j+1)

X l and maximizing with respect
to qθ(·), we obtain,

q
(j+1)
θ (θ) =

p(θ; ξ(j)) exp
(
E
q
(j+1)

X l

[
ln p(X ,X l|θ; ξ(j))

])
∫
p(θ; ξ(j)) exp

(
E
q
(j+1)

X l

[
ln p(X ,X l|θ; ξ(j))

])
dθ
.

(27)

Steps 1a and 1b comprise the E-step of the variational Bayesian
EM.

Sergios Theodoridis, University of Athens. Machine Learning, 96/152



The Mean Field Approximation

• M-Step 2: Freezing q
(j+1)
θ and q

(j+1)

X l , maximize the lower bound w.r.
to ξ, i.e.,

ξ(j+1) = arg max
ξ
F(q

(j+1)
θ , q

(j+1)

X l ; ξ).

• The concept behind the mean field approximation in the Bayesian
variational approach is illustrated in the figure below. There are two
observations to be made. Step 1 is now split into two parts and more
important, the KL divergence does not (in general) go to zero; hence,
the bound does not become tight.
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• M-Step 2: Freezing q
(j+1)
θ and q

(j+1)

X l , maximize the lower bound w.r.
to ξ, i.e.,

ξ(j+1) = arg max
ξ
F(q
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θ , q
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variational approach is illustrated in the figure below. There are two
observations to be made. Step 1 is now split into two parts and more
important, the KL divergence does not (in general) go to zero; hence,
the bound does not become tight.

Illustration of the stepwise increase of ln p(j) at the (j + 1) iteration of the Variational Bayesian EM algorithm.

Observe that ln p(j+1) > ln p(j), where we have used the notation, p(j) = p(X , ξ(j)) and

p
(j)
·|· := p(X l, θ|X ; ξ(j)).
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The Case of the Exponential Family of Probability Distributions

• Looking carefully at (26) and (27), it becomes clear that the
practical application of the variational Bayesian EM depends on
the computational tractability of the expected values of the
ln p(X ,X l|θ; ξ).

• We will restrict the involved distributions to lie within the
exponential family of probability distributions. This will simplify
the computations and all the updates become updates of
parameters that define such distributions!

Sergios Theodoridis, University of Athens. Machine Learning, 98/152



The Case of the Exponential Family of Probability Distributions

• Looking carefully at (26) and (27), it becomes clear that the
practical application of the variational Bayesian EM depends on
the computational tractability of the expected values of the
ln p(X ,X l|θ; ξ).

• We will restrict the involved distributions to lie within the
exponential family of probability distributions. This will simplify
the computations and all the updates become updates of
parameters that define such distributions!

Sergios Theodoridis, University of Athens. Machine Learning, 98/152



The Case of the Exponential Family of Probability Distributions

• Let us assume that the points in the complete data set
(xn,x

l
n), n = 1, 2, . . . , N , are i.i.d. Then,

p(X ,X l|θ) =

N∏
n=1

p(xn,x
l
n|θ).
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The Case of the Exponential Family of Probability Distributions

• We further assume p(xn,x
l
n|θ) to lie within the exponential

family, i.e.,

p(xn,x
l
n|θ) = g(θ)f(xn,x

l
n) exp

(
φT (θ)u(xn,x

l
n)
)
.

• We further adopt a prior for θ to be of the respective conjugate
form, i.e.,

p(θ|λ,v) = h(λ,v)(g(θ))λ exp
(
φT (θ)v

)
.

The parameters λ, v comprise ξ, which will be considered fixed,
in order to focus on the specific functional forms which qX l(·)
and qθ(·) get as iterations progress. So, we will relax the
notational dependence on the parameters.
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The Case of the Exponential Family of Probability Distributions

• E-step 1a: It turns out, after some simple algebraic manipulation on
(26), that this step becomes

q
(j+1)

xln
(xln) = g̃f(xn,x

l
n)eφ̃

Tu(xn,x
l
n),

where g̃ is the respective normalization constant and

φ̃T = E
q
(j)
θ

[φT (θ)].

This is very interesting indeed. Although no functional form was
assumed for qX l , it turns out to be a member of the exponential family!

• E-Step 1b: From (27) and some algebraic manipulations, it easily turns
out that

q
(j+1)
θ (θ) ∝ (g(θ))λ+N exp

(
φT (θ)

(
v +

N∑
n=1

E
q
(j+1)

xln

[
u(xn,x

l
n)
]))

.

Thus, the approximation q
(j+1)
θ (θ) of the posterior p(θ|X ) is of the

same form as the conjugate prior with

λ̃ = λ+N, ṽ = v +

N∑
n=1

E
q
(j+1)

xln

[
u(xn,x

l
n)
]
.
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A Variational Bayesian Approach to Linear Regression

• Let us consider our familiar regression task,

y = Φθ+ η, y ∈ RN , θ ∈ RK .

We have already treated the case where η was Gaussian and the
prior p(θ) was also Gaussian. We used the EM in order to
optimize the evidence p(y) w.r. to the parameters, which define
the two adopted Gaussian pdfs.

• In contrast, now, we will adopt assumptions that do not allow for
tractable analytic computations of the posterior, p(θ|y), which is
a prerequisite both for the standard EM as well as for the analytic
computations of the evidence p(y).
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A Variational Bayesian Approach to Linear Regression

• Assume that,

p(y|θ, β) = N (Φθ, β−1I). (28)

That is, the noise is Gaussian and for simplicity we have
considered it to be white, Ση = σ2

ηI, and β = 1
σ2
η

.

• Concerning the prior of θ, each one of the parameter
components, θk, is allowed to have a different variance,
σ2
k := 1

αk
, k = 0, 1, . . . ,K − 1. Moreover, the values of β and

αk, k = 0, . . . ,K − 1 will not be treated as deterministic
variables, but they are assumed to be random, as well.
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A Variational Bayesian Approach to Linear Regression

• The respective priors for the unknown random variables are adopted as:

p(θ|α) =

K−1∏
k=0

N (θk|0, α−1
k ), (29)

p(α) =

K−1∏
k=0

Gamma(αk|a, b), (30)

and p(β) = Gamma(β|c, d). (31)

The priors indicate that the game will be played within the exponential
family terrain. The prior p(α) is the conjugate pair of (29). Also, (31)
would be the conjugate of (28), if we had considered θ fixed.
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The priors indicate that the game will be played within the exponential
family terrain. The prior p(α) is the conjugate pair of (29). Also, (31)
would be the conjugate of (28), if we had considered θ fixed.

A graphical illustration of the dependencies among the various variables
involved in the model of linear regression. The red circle indicates the
random variable which is observed, gray circles indicate (hidden) random
variables and squares correspond to deterministic parameters. The
direction of each arrow indicates the direction of the dependence
between the connected variables. The red box indicates that the above
dependencies hold for all, N , time instants.
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A Variational Bayesian Approach to Linear Regression

• Our current task comprises hidden variables in the form of
parameters grouped in θ, α and β and it involves no other latent
variables. The set of observations is now given by y. Also,
observe that the posterior p(θ,α, β|y) is not analytically
tractable.

• We will resort to the variational Bayesian EM to obtain an
estimate of the previous posterior pdfs.
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A Variational Bayesian Approach to Linear Regression

• Using the mean field approximation, we assume that the
approximation to the posterior (the dependence on y has been
suppressed for notational convenience) factorizes as

q(θ,α, β) = qθ(θ)qα(α)qβ(β),

where we have relaxed our notation, for simplicity, from the
explicit dependence on a, b, c and d.

• The variational EM consists of three sub-steps, one for each
factor in the previous factorized equation. Starting from some
initial guesses, for E[β], E[αk], k = 0, . . . ,K − 1, we get:
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A Variational Bayesian Approach to Linear Regression

• E-Step 1a: “Rephrasing” the general update form of (27) we
have,

ln q
(j+1)
θ (θ) = E

q
(j)
α q

(j)
β

[
ln p(y,θ,α,β)

]
+ constant.

After some manipulations, the following results.

• Let A := diag
{
E[α0], . . . ,E[αK−1]

}
. Then,

q
(j+1)
θ (θ) = N (θ|µ(j+1)

θ , Σ
(j+1)
θ ),

where

Σ
(j+1)
θ =

(
A+ E[β]ΦTΦ

)−1
, µ

(j+1)
θ = E[β]Σ

(j+1)
θ ΦTy. (32)

Note that the approximation to the posterior p(θ|y) turns out to
be Gaussian, although we did not assumed it to be so. This is a
consequence of the particular form of the adopted pdfs, which
spring from the exponential family.
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A Variational Bayesian Approach to Linear Regression

• E-Step 1b: We have that:

ln q(j+1)
α (α) = E

q
(j+1)
θ q

(j)
β

[ln p(y,θ,α,β)] + constant

= E
q
(j+1)
θ q

(j)
β

[ln p(θ|α) + ln p(α)] + constant,

which finally leads to (for k = 0, . . . ,K − 1)

q(j+1)
α (α) =

K−1∏
k=0

Gamma(αk|ã, b̃k), ã = a+
1

2
, b̃k = b+

1

2
E
q
(j+1)
θ

[θ2
k].

• Note that in the previous recursions we still need to compute the
following (k = 0, 1, . . . ,K − 1):

E[θ2
k] =

[
E
q
(j+1)
θ

[θθT ]
]
kk

=
[
Σ

(j+1)
θ + µ

(j+1)
θ µ

(j+1)T
θ

]
kk
,

where [A]kk denotes the (k, k) element of A. We still need to compute
E[αk], k = 0, 1, . . . ,K − 1, to be used in the next iteration in E-Step
1a. However, each αk follows a gamma distribution, hence

E
q
(j+1)
α

[αk] =
ã

b̃k
.
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1

2
, b̃k = b+

1

2
E
q
(j+1)
θ

[θ2
k].

• Note that in the previous recursions we still need to compute the
following (k = 0, 1, . . . ,K − 1):

E[θ2
k] =

[
E
q
(j+1)
θ

[θθT ]
]
kk

=
[
Σ

(j+1)
θ + µ

(j+1)
θ µ

(j+1)T
θ

]
kk
,

where [A]kk denotes the (k, k) element of A. We still need to compute
E[αk], k = 0, 1, . . . ,K − 1, to be used in the next iteration in E-Step
1a. However, each αk follows a gamma distribution, hence

E
q
(j+1)
α

[αk] =
ã
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A Variational Bayesian Approach to Linear Regression

• E-Step 1c: From the general rule we have:

ln q
(j+1)
β (β) = E

q
(j+1)
θ q

(j+1)
α

[
ln p(y,θ,α, β)

]
+ constant

= E
q
(j+1)
θ q

(j+1)
α

[
ln p(y|θ, β) + ln p(β)

]
+ constant,

which finally results in

q
(j+1)
β (β) = Gamma(β|c̃, d̃),

where c̃ = c+ N
2 , d̃ = d+ 1

2Eq(j+1)
θ

[‖y − Φθ‖2].

• To complete the recursions we need the expectation

E
q
(j+1)
θ

[‖y − Φθ‖2] = ‖y − Φµ
(j+1)
θ ‖2 + trace

{
ΦΣ

(j+1)
θ ΦT

}
.

Also, for the E-Step 1a of the next iteration we need to compute,

E
q
(j+1)
β

[β] =
c̃

d̃
.
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d̃
.
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ln q
(j+1)
β (β) = E

q
(j+1)
θ q

(j+1)
α

[
ln p(y,θ,α, β)

]
+ constant

= E
q
(j+1)
θ q

(j+1)
α

[
ln p(y|θ, β) + ln p(β)

]
+ constant,
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q
(j+1)
β (β) = Gamma(β|c̃, d̃),

where c̃ = c+ N
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A Variational Bayesian Approach to Linear Regression

• Once the algorithm has converged, predictions can be made on
the basis of the predictive distribution given in (6), by replacing
Σθ|y, µθ|y and σ2

η by the converged values of Σθ, µθ and E[β],
respectively.

• Note, however, that this is only an approximation, since the
Gaussian form for the posterior of the parameters is a result of
the mean field approximation and also we have used the mean
value, E[β], in place of the noise variance. The latter can be
justified that as the number of training samples increases, the
distribution of β sharply peaks around its mean value.
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An Example

• The goal of this example is to demonstrate the comparative
performance, via a simulation example, of a) the variational
Bayesian method, b) the Maximum Likelihood/LS, and c) the
EM algorithm of based on Gaussian assumptions, as discussed in
the beginning of the lectures in the context of linear regression.
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An Example

• To this end, we generate the training data according to the
following scenario. The interval in the real axis [−10, 10] was
sampled at N = 100 equidistant points, xn, n = 1, 2, . . . , 100.
The training data comprise the pairs (yn, xn), n = 1, 2, . . . , N ,
where

yn = exp

(
−1

2

(xn + 5.8)2

0.1

)
+ exp

(
−1

2

(xn − 2.6)2

0.1

)
+ ηn

where ηn are i.i.d zero mean Gaussian noise samples, of variance
σ2
η = 0.015. To fit the data the following model was adopted:

y =

N∑
k=1

θk exp

(
−1

2

(x− xk)2

0.1

)
.

• Thus, the matrix Φ has the following elements

[Φ]nk = exp

(
−1

2

(xn − xk)2

0.1

)
, n = 1, 2, . . . , N, k = 1, 2, . . . , N.
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An Example

• Note that we have used as many parameters as the number of
data points. Naturally, this will lead to overfitting. The essence
of the example is to demonstrate the power of the variational
Bayesian method, when we use different variances for the
different parameters. This provides a sparsifying nature to the
approach; this will be justified soon.
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• Note that we have used as many parameters as the number of
data points. Naturally, this will lead to overfitting. The essence
of the example is to demonstrate the power of the variational
Bayesian method, when we use different variances for the
different parameters. This provides a sparsifying nature to the
approach; this will be justified soon.

The red full-line curve corresponds to the true
function which generates the data. The gray full-curve
corresponds to the model, having plugged in as
estimated values θ̂k the respective posterior mean
values from (32). The dotted red curve corresponds to
the ML solution and the dotted gray curve to the EM,
where the estimates correspond to means of the
respective posteriors, ((4), using the resulting EM
estimates). The performance advantages of the
variational approach are obvious, which almost
coincides with the true one.
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When Bayesian Inference Meets Sparsity

• The close relationship between the use of a prior pdf and the
regularization of a cost function has already been discussed.
There, the adoption of a Gaussian prior together with a Gaussian
noise for the regression task led to the equivalence of MAP with
the ridge regression.

• It will not take a minute to show that the use of a Gaussian
model for the noise together with a Laplacian prior for each one
of the weights, i.e.,

p(θk) =
λ

2
exp

(
− λ|θk|

)
,

renders MAP equivalent to the `1 norm regularization of the LS
cost.
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When Bayesian Inference Meets Sparsity

• For a Bayesian, however, who is not interested in cost functions,
the secret that lies within the Laplacian prior is hidden in the so
called heavy tails of this distribution. This is in contrast to a
Gaussian pdf, which has very light tails.

• In other words, the probability that an observation of a Gaussian
random variable can take values far from its mean decreases
very fast. For example, the probability of observing variables that
deviate from the mean by more than 2σ, 3σ, 4σ and 5σ are
0.046, 0.003, 6× 10−5 and 6× 10−7, respectively.

• That is, with a Gaussian prior, the learning process looks for
values “around” the mean; values away form the mean are heavily
penalized.
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When Bayesian Inference Meets Sparsity

• Thus, in sparsity-aware learning the use of a Gaussian would be
the wrong information to pass over to the learning mechanism.

• Assuming the mean of the prior to be zero, although we expect
most of the components of our parameters to be zero, still we
want a few of them to be large. Hence, our prior information
should be selected such as to assign small (but not too small)
probabilities to large values.

• To a Bayesian, sparsity-aware learning becomes synonymous with
imposing heavy-tail priors. Let us now turn back to our current
task, and see how this brief introduction is related to our model.
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When Bayesian Inference Meets Sparsity

• Our prior pdf, p(θ), according to the model (29)-(30) is obtained
by marginalizing out the hyperparameters α, i.e.,

p(θ; a, b) =

∫
p(θ|α)p(α)dα

=

∫ K−1∏
k=0

N (θk|0, α−1
k )Gamma(αk|a, b)dα

=

K−1∏
k=0

st(θk|0,
a

b
, 2a),

where student’s-t pdf is defined as

st(x|µ, λ, ν) :=
Γ(ν+1

2 )

Γ(ν2 )

(
λ

πν

)1/2 1(
1 + λ(x−µ)2

ν

) ν+1
2

.
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When Bayesian Inference Meets Sparsity

• The parameter ν is known as the number of degrees of freedom.
The figure below shows the graph of student’s-t pdfs for different
values of ν. For ν →∞, the student’s-t distribution tends to a
Gaussian of the same mean and precision λ. Observe the heavy
tail feature of student’s-t pdf, especially for low values of ν.
Recall that in our case, where we have used uninformative
hyperpriors, the hyperparameter, a, was given a small value.
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When Bayesian Inference Meets Sparsity

• Thus, our treatment of the regression task favors sparse solutions.
It will push as many of the coefficients, θk, as possible towards
zero. That is, it prunes the less relevant basis functions, φk(x),
by setting the corresponding coefficients to zero.

• This is also the reason for using different hyperparameters, αk,
for each one of the parameters, θk, k = 0, 2, . . . ,K − 1, which
provide allows the learning procedure to adjust each one of the
parameters individually. This approach was coined Automatic
Relevance Determination (ARD).
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When Bayesian Inference Meets Sparsity

• Figure (a) provides a clear demonstration of the sparsity imposing
properties of the student’s-t distribution. In the two-dimensional
space, and as we move away from zero, probability mass is
skewed towards the coordinate axes; that is, the pdf peaks around
sparse solutions and sparsity is now enforced probabilistically. In
contrast, the Gaussian does not give much chance to large values,
Figure (b)

(a) (b)
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A Variational Bayesian Approach to Gaussian Mixture Modeling

• One of the problems, that may be encountered in practice in the
Gaussian mixture task via the standard EM algorithm, is when
one of the mixture components happens to get centered at (or

very close to) one of the data points, e.g., µ
(j+1)
k = xn, for some

values of k and n.

• In such a case, the exponent term of the respective Gaussian
becomes one and the contribution of this particular component in
the log likelihood is equal to (2πσ2

k)
−l/2. If, in addition, σk is

very small, this will lead the likelihood to a large value, although
this is not indicative that the true model has been learned.

• One way to bypass this drawback is to enforce priors on the
involved parameters and resort to a variational Bayesian
philosophy to estimate the quantities of interest.
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A Variational Bayesian Approach to Gaussian Mixture Modeling

• The starting point is the set of observations, X = {x1, . . . ,xN}.
Assume that the respective pdf model is:

p(x) =

K∑
k=1

PkN (x|µk, Q−1
k ), x ∈ Rl.

The unknown parameters, to be estimated are: (Pk,µk, Qk)
∣∣∣K
k=1

.

• We already know that this is a typical task with latent variables
and the complete set comprises (xn, kn), n = 1, 2, . . . , N , with
kn being the index of the respective mixture, kn = 1, 2, . . . ,K.

• In our previous treatment of the mixture task, via the standard
EM, the information about each one of the latent variables, kn,
entered into the problem via the posterior P (kn|xn,P ).
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A Variational Bayesian Approach to Gaussian Mixture Modeling

• In contrast, now, an auxiliary latent random vector is introduced,
zn ∈ RK , for each observation, n = 1, 2, . . . , N . Its components
take binary values, such as

znk ∈ {0, 1}, and

K∑
k=1

znk = 1, (33)

and they are used as indicators of the respective mixture from
which the observation at time n, xn, was drawn; that is, if
znk = 1 it indicates that xn was drawn from the k-th distribution.

• Obviously,
P (znk = 1) = Pk,

and for any zn ∈ RK that satisfies (33)

P (zn) =

K∏
k=1

P
znk
k .
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A Variational Bayesian Approach to Gaussian Mixture Modeling

• Hence, the probability of occurrence of the set Z = {z1, . . . ,zN}
is

P (Z) =

N∏
n=1

K∏
k=1

P
znk
k .

Hence, the N latent variables follow a standard multinomial
probability distribution.

• In the sequel, we adopt the following prior pdfs,

p(µk) = N
(
µk|0, β−1I

)
and

p(Qk) =W(Qk|W0, ν0),

for fixed ν0, W0 and β.

• That is, the adopted priors are Gaussian for the mean values and
Wishart pdfs for the precision matrices, respectively. We will treat
P = [P1, . . . , Pk]

T as deterministic parameters whose optimized
value is obtained in the M-step.
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A Variational Bayesian Approach to Gaussian Mixture Modeling

• Following the philosophy of the variational Bayesian EM, we
adopt

q(Z,µ1:K , Q1:K) = qz(Z)qµ(µ1:K)qQ(Q1:K),

where µ1:K and Q1:K indicate the collections {µ1, . . . ,µK} and
{Q1, . . . , QK}, respectively.

• Furthermore, observe that the conditional pdf of the observations
can now be written as

p(X|Z,µ1:K , Q1:K) =

N∏
n=1

K∏
k=1

(
N (xn|µk, Q−1

k )
)znk .
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A Variational Bayesian Approach to Gaussian Mixture Modeling

• The figure below shows the graphical model that corresponds to
the previous set up:
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An Example

• The purpose of this example is to demonstrate the power of the
variational Bayesian method for mixture modeling compared to the
standard EM algorithm. Five clusters of data were generated using a
corresponding number of Gaussians. The parameters used for each one
of these Gaussians were:

µ1 = [−2.5, 2.5]T , µ2 = [−4.0,−2.0]T µ3 = [2.0,−1.0]T

µ4 = [0.1, 0.2]T , µ5 = [3.0, 3.0]T

and

Σ1 =

[
0.5 0.081

0.081 0.7

]
Σ2 =

[
0.4 0.02

0.002 0.3

]
Σ3 =

[
0.6 0.531

0.531 0.9

]
Σ4 =

[
0.5 0.22
0.22 0.8

]
Σ5 =

[
0.88 0.2
0.2 0.22

]
• Prior to running the algorithms, we assumed that we do not know the

exact number of mixtures, so a number of K = 25 clusters was used;
that is, a much larger number than the true one.
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An Example
• a) The initial (25) Gaussians for the EM algorithm. b) The final clusters obtained after convergence by the EM

algorithm. c) The initial (25) Gaussians for the variational EM. d) The final Gaussians obtained by the
variational EM, after convergence. All the curves correspond to the 80% probability regions. Observe that the
variational EM identifies the five clusters associated with the data; the rest of the mixtures correspond to zero
probability weights.
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The Relevance Vector Machine Framework

• Let us now consider a specific regression model, i.e.,

y(x) = θ0 +

N∑
k=1

θkκ(x,xk) + η.

In other words, the general regression model is considered for
K = N + 1, where N is the number of observations and

φk(x) = κ(x,xk),

where κ(·, ·) is a kernel function, centered at the input observation
points, xk, k = 1, 2, . . . , N . Thus, the number of parameters
becomes equal (plus one) to the number of training points.

• Due to the excessively large number of parameters, to be
estimated, one has to resort to sparsity enforcing techniques, e.g.,
ARD via the variational Bayesian path. We have already done it
for regression in the last example.

Sergios Theodoridis, University of Athens. Machine Learning, 129/152



The Relevance Vector Machine Framework

• Let us now consider a specific regression model, i.e.,

y(x) = θ0 +

N∑
k=1

θkκ(x,xk) + η.

In other words, the general regression model is considered for
K = N + 1, where N is the number of observations and

φk(x) = κ(x,xk),

where κ(·, ·) is a kernel function, centered at the input observation
points, xk, k = 1, 2, . . . , N . Thus, the number of parameters
becomes equal (plus one) to the number of training points.

• Due to the excessively large number of parameters, to be
estimated, one has to resort to sparsity enforcing techniques, e.g.,
ARD via the variational Bayesian path. We have already done it
for regression in the last example.

Sergios Theodoridis, University of Athens. Machine Learning, 129/152



Adopting the Logistic Regression Model for Classification

• Our interest now turns on how to treat such “large” models in
the context of classification. In analogy to the support vector
machines (SVM), such models have become known as Relevance
Vector Machines.

• The starting point is that, given the value of a measured feature
vector, x, classification is performed according to the sign of the
discriminant function, namely

f(x) := θTφ(x) := θ0 +

N∑
k=1

θkφk(x).

The goal is to obtain an estimate of the parameters θ in the
Bayesian framework.

• In this vein, the logistic regression model will be adopted.
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Adopting the Logistic Regression Model for Classification

• According to this model and for a two-class (ω1, ω2) classification
task, the posterior probabilities, as required by the Bayesian
classifier, are modeled as

P (ω1|x) =
1

1 + exp
(
− θTφ(x)

) , P (ω2|x) = 1− P (ω1|x).

• The function σ(t) := 1
1+exp(−t) , is known as the logistic sigmoid

link.

• Considering the training set (yn,xn), xn ∈ Rl and yn ∈ {0, 1},
and adopting a Bernoulli distribution for P (y|x), the respective
likelihood function can be defined as

P (y|θ) =
N∏
n=1

(
σ
(
θTφ(xn)

) )yn(
1− σ

(
θTφ(xn)

) )1−yn
,

which is the counterpart of (28) for the regression case.
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Adopting the Logistic Regression Model for Classification

• In line with the ARD philosophy, we adopt the following Gaussian
prior

p(θ;α) = N (θ|0, A−1), A := diag {α0, . . . , αN}

• The goal now is to maximize the Type II log-likelihood with
respect to the unknown parameters, α. However, p(y|θ) is no
more Gaussian and marginalizing out θ cannot be carried out
analytically.

• To this end, the Laplacian approximation will be employed.
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Adopting the Logistic Regression Model for Classification

• The Laplacian approximation, around the MAP estimate, is
employed and the following stepwise procedure is adopted:

1) Assuming α to be currently available, maximize with respect to
θ the posterior

p(θ|y,α) =
P (y|θ)p(θ|α)

P (y|α)
.

Defining s = [s1, s2, . . . , sN ]T , sn := σ(θTφ(xn)), we finally
obtain

θ̂MAP = A−1ΦT (y − s) A := diag{α0, α2, . . . , αN}.

2) Use θ̂MAP and the Laplace approximation method to

approximate p(θ|y,α) by a Gaussian centered at θ̂MAP, whose
covariance matrix turns out to be

Σ−1 = (ΦTTΦ +A),

where T := diag{t1, t2, . . . , tN} and

tn = σ
(
θTφ(xn)

)(
1− σ

(
θTφ(xn)

) )∣∣∣
θ=θ̂MAP
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Adopting the Logistic Regression Model for Classification

• (continued)

3) Having obtained θ̂MAP and computed Σ, we obtain the
following approximation for the Type-II likelihood,

P (y|α) = P (y|θ̂MAP)p(θ̂MAP|α)(2π)
N
2 |Σ|1/2,

whose maximization w.r. to α finally leads to the following
iterative solution (starting from some initial values),

α
(new)
k =

1− α(old)
k Σ

(old)
kk

(θ
(old)
MAP,k)2

.

The procedure continues till a convergence criterion is met.
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RVM: A Simulation Example

• In this example, the performance of the RVM is tested in the
context of a two-class two-dimensional classification task. The
data set comprises N = 150 points uniformly distributed in the
region [−5, 5]× [−5, 5]. For each point,
xn = [xn,1, xn,2]T , n = 1, 2, . . . , N , we compute

yn = 0.5x3
n,1 + 0.5x2

n,1 + 0.5xn,1 + 1 + η,

where η stands for zero-mean Gaussian noise of variance σ2
η = 4.

The point is assigned to either of the two classes, depending on
which side of the graph of the function

f(x) = 0.5x3 + 0.5x2 + 0.5x+ 1,

in the two-dimensional space, yn lies. That is, if yn > f(xn1) the
point is assigned to class ω1 otherwise is assigned to class ω2.

• The Gaussian kernel was used with σ2 = 3, which we found to
give the best results.
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RVM: A Simulation Example

• The figure below shows the resulting decision curve that results
from the RVM method and classifies the points of the the
red/gray classes.

• Six points, which have been encircled, are the surviving relevance
vectors. The rest of the parameters come out to almost zero
values, due to the sparsifying power associated with the
underlying ARD philosophy.

• Note that, the number of support vectors surviving is significantly
less compared to the case of SVM, treated in Chapter 11.
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RVM vs SVM

• Compared to SVM (SVR), the RVM machinery presents
advantages and disadvantages.

• The SVM approach results in a single solution, due to the
convexity of the associated cost functions. In contrast, RVM
builds upon non-convex cost. Thus, one may have to run the
optimization algorithm a number of times, starting each time
from different initial conditions, since a non-convex problem can
be trapped in a local minimum.
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RVM vs SVM

• Concerning complexity, the RVM amounts to O(N3) operations
per iteration. In contrast, the complexity for solving the SVM
scales from linear to (approximately) quadratic. Also the memory
for the RVM exhibits a O(N2) dependence as opposed to a linear
dependence to the SVM case. Finally, RVMs need, in general,
longer training times to converge, compared to SVMs, for similar
error rates.

• A fast RVM algorithm has also been developed, that operates in
a constructive manner, until all relevant basis functions (for which
the associated weights are nonzero) have been included. If M
denotes the number of relevant terms, the complexity amounts to
O(M3), which for M << N is more efficient than the original
RVM.

• The main advantage of the RVMs is that, in general, they result
in sparser solutions compared to the SVMs, for similar levels of
generalization errors.
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Sparsity: The Spike and Slab Method

• Let us consider our familiar regression model,

y = θTφ(x) + η =

K−1∑
k=0

θkφk(x) + η.

• A new set of auxiliary binary indicator variables are introduced,
sk ∈ {0, 1}, k = 0, 1, . . . ,K − 1. Let, also, the prior imposed on
θ, be a Gaussian, p(θ) = N (θ|0, σ2I).

• As the name suggests, the indicator variables control the presence
or not of a parameter in the above summation. For example, if
sk = 1 the corresponding parameter, θk, is present and if sk = 0
then θk is removed; this is the way that sparsity is imposed onto
the model.
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Sparsity: The Spike and Slab Method

• To this end, a joint Bernoulli prior distribution is adopted for the
indicator variables, i.e.,

P (s) =

K−1∏
k=0

psk(1− p)1−sk ,

where the parameter 0 ≤ p ≤ 1 specifies a prior level of sparsity.

• This turns out to be equivalent with adopting the following prior
on the parameters,

p(θ) =
K−1∏
k=0

(
skN (θk|0, σ2) + (1− sk)δ(θk)

)
• The corresponding posterior is not Gaussian and its computation

can be done by approximate inference techniques, such as
variational or Monte Carlo.
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Gaussian Processes

• The emphasis now turns in nonparametric models. The main
assumption is that the underlying functions, that express the
input-output dependence, lie in RKH spaces. Here, we are
approaching such models via Bayesian arguments.

• Let us recall the nonlinear regression task, i.e.,

y = θ0 +

K−1∑
k=1

θkφk(x) + η = θTφ(x) + η,

where the parameters, θ, are treated as a random vector. Let us
define,

f(x) = θTφ(x),

where f(x) is a random process.
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Gaussian Processes

• The idea which spans this section is to work directly on f(x)
instead on the indirect approach of modeling it via a set of
parameters, θ. That is, we will treat the more general nonlinear
regression task, expressed as

y = f(x) + η.

• We will focus on a specific class of random processes, known as
Gaussian processes.

• Definition: A random process, f(x), is called a Gaussian process
(GP) iff for any finite number of points, x(1), ...,x(N), the
respective joint pdf, p

(
f(x(1)), ...f(x(N))

)
, is Gaussian.
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Gaussian Processes

• We know that a set of jointly Gaussian distributed random
variables are fully described by the respective mean value and the
covariance matrix. In a similar spirit, a Gaussian process is fully
determined by its mean value and its covariance function, i.e.,

µx = E [f(x)] , covf (x,x′) = E
[
(f(x)− µx)(f(x′)− µx′)

]
.

• A Gaussian process is said to be stationary if µx = µ and its
covariance function is of the form,

covf (x,x′) = covf (x− x′).

• In addition, if covf (·, ·) depends on the magnitude of the distance
between x and x′, i.e., (‖x− x′‖), the Gaussian process is called
homogeneous. From now on, we will assume µx = 0.
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Covariance Functions and Kernels

• For any N and any collection of N points, x(1), ...,x(N), the
respective covariance matrix is defined by,

Σ = E[ffT ], where f := [f(x(1)), ..., f(x(N))]
T ,

with elements given by

[Σ]ij = covf (x(i),x(j)), i, j = 1, 2, ...N.

• Since Σ is a positive semidefinite matrix, this guarantees that the
covariance function is a kernel function. To stress this out, from
now on, we will use the notation

covf (x,x′) = κ(x,x′),

and the covariance matrix becomes the corresponding kernel
matrix denoted as K.
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Covariance Functions and Kernels

• A popular kernel, commonly used in practice, is the squared
exponential or Gaussian kernel,

κ(x,x′) = exp

(
−‖x− x

′‖2

2h2

)
,

where h determines the so-called length scale of the process.

• The smaller the value of h is, the larger the “statistical” similarity
(stronger correlation) of two points having a distance
d = ‖x− x′‖ apart.
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Covariance Functions and Kernels

• Figure (a) shows examples of different realizations of a stationary
Gaussian processes, using the Gaussian covariance kernel with
h = 2 and Figure (b) for h = 0.2.
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Covariance Functions and Kernels

• Let us assume that we are given a set X of input observations,
X = {x1, ...xN}. Recall that the main goal in a Bayesian
regression task is to obtain the two pdfs,

p(y|X ) and p(y|x,y,X ),

where,
y = f + η, y := [y1, ...yN ]T ,

and
y = f(x) + η.

• The first of the two pdfs is the joint probability density of the
output variables, which are generated by input points in X ; the
associated randomness is due to f as well as to the noise η.

• The second pdf refers to the prediction of the value of the output
y, given the value of the input x and the training data
(yn,xn), n = 1, 2, ..., N . We will drop out X to unclutter
notation.
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Covariance Functions and Kernels

• Assuming f(·) to be a zero-mean Gaussian process, then f is
jointly Gaussian with zero mean and covariance matrix K,
dictated by the covariance function/kernel κ(·, ·), i.e.,

p(f) = N (f |0,K).

• Also, let η be of zero mean with covariance matrix Ση and
independent of f(·); without harming generality, let Ση = σ2

ηI.
Thus,

p(y|f) = N (y|f , σ2
ηI).

Then, following standard, by now, arguments, we obtain

p(y) = N (y|0,K + σ2
ηI). (34)
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Covariance Functions and Kernels

• To obtain p(y|x,y), we can use (34) and apply it recursively. To
this end, it will also be useful to bring into the notation the
number of available observations, N , explicitly and write

yN+1 =

[
y

yN

]
, yN := [y1, ..., yN ]T .

• From (34), yN+1 follows a Gaussian distribution

p(yN+1|0, ΣN+1), where ΣN+1 := KN+1 + σ2
ηIN+1.

Then, from Bayes’ theorem, we have

p(y|yN ) =
p(yN+1)

p(yN )
. (35)

• However, since the joint pdf is Gaussian, the conditional in (35)
is also Gaussian.
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Covariance Functions and Kernels

• The respective mean and variance are computed by partitioning
the matrix ΣN+1, i.e.,

ΣN+1 =

[
κ(x,x) + σ2

η, κT (x)

κ(x), ΣN

]
, κ(x) := [κ(x,x1), ..., κ(x,xN )]T ,

and finally it turns out that,

µy(x) = κT (x)Σ−1
N y,

σ2
y(x) = σ2

η + κ(x,x)− κT (x)Σ−1
N κ(x).

• Taking into account that ΣN = KN + σ2
ηI, note that µy(x) is

identical to ŷ obtained by the kernel ridge regression, for
appropriate choices of the involved parameters (C and σ2

η).

• The above formulea can be obtained from the linear case
equations of the Bayesian learning, via the kernel trick.
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Gaussian Processes for Regression: An Example

• A number of N = 20 points are randomly sampled from a realization of
a Gaussian process, with zero mean and covariance function based on
the Gaussian kernel with length scale h = 0.5. In the sequel, Gaussian
noise was added to these GP points, with variance 0.01, to form the set
of observed data (shown as ’+’ in the figure below).

• Then, we perform predictions of the output variables corresponding to
D = 1000 equidistant input points in the interval [−3, 4]; for the
prediction, the expressions for the posterior GP mean (solid line) and
variance, derived before, were used. The shaded area, surrounding the
curve of the posterior mean, corresponds to the error bars µy ± 2σy of
the posterior prediction. Notice the increase of the variance in regions
where observed data points are scarce.
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Gaussian Processes for Regression: An Example

Popular related package: EDWARD (http://edwardlib.org)
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